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       Introduction 
 
In this paper I will discuss about the control flow obfuscations used in malwares. The purpose of using 
these control-flow obfuscations, how they are done and how they are used to deter reverse engineering 
will be discussed. 
 
The term control flow obfuscation is used in this article to indicate code sections in the binary, which are 
added in order to make the comprehension of program more difficult. 
 
After this, I also present a pintool I have written to help detect some important sequence of instructions, 
which will be of interest to the virus analyst. 
 
Note: You may need to zoom into the screenshots of disassembly included to view them clearly. 
 

Purpose of Control Flow Obfuscations 
 
The two main reasons of using control flow obfuscations in malwares are: 
 

1. To deter the static reverse engineering of malwares. It becomes more difficult to target the code 
sections of interest. 

2. To defeat the static signatures used by AV vendors, which rely on specific byte sequences in the 
binary to detect them. 

 
Application Defined Callback Functions 

 
There are certain APIs provided by Microsoft, which allow us to register a Callback Function. These can 
be used by malwares to hide the main logic of their code. They can pass a pointer to the malicious 
subroutine as the callback function parameter for the API. 
 
Window Procedure 
 
Using RegisterClassExA(), a Window Procedure can be registered for a specific Class Name. All the 
windows with that class name will have the same Window Procedure. 
 
When a window is created using CreateWindowA(), the Window Procedure is invoked with certain 
default window messages like WM_CREATE, WM_NCCREATE and so on. 
 
However, the main virus code will be executed only when a particular windows message is received. 
 
Let us take as an example a virus which calls malicious subroutine indirectly: 
 
After unpacking the malware, the first thing it does is to register a Window Class with the name, 
"Runtime Check" with the Window Procedure subroutine at address, 00402680. It then creates the 



Window. During the creation of the Window, the Window Procedure is invoked which handles the 
initial window messages like WM_CREATE. 
 

 
 
After the Window is created, it retrieves the message from the Thread's queue using GetMessage() and 
dispatches it to the Window Procedure using DispatchMessage(). 
 
Inside the Window Procedure, it reads the code of the Window Message from the stack and stores it in 
the EAX register. It then checks whether the window message code is greater than 0xF. If it is equal to 
0x113, then it sets up a Timer that elapses after 1 second. Since the last parameter to the SetTimer() 

function is NULL, the system will post a WM_TIMER message to the queue every time the timer elapses. 
Each time a WM_TIMER message is retrieved from the application thread's message queue using 
GetMessage(), it increments a counter. Once the counter is equal to 5, it calls the malicious subroutine. 
Since the timer is set to elapse after 1 second, so overall delay introduced is approximately, 5 seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Window Procedure: 
 

 
 
Set the Timer: 
 

 
 
Check the Window Message Code: 
 

 



 
Below are the corresponding sections of code: 
 
https://gist.github.com/c0d3inj3cT/7611371#file-wmtimer-asm 
 
And here is the code rewritten in C: 
 
if(wind_code > 0xF) 
{ 
    if(wind_code == 0x113) 
    { 
        counter++; 
        if(counter == 0x5) 
        { 
            call malicious_code; 
        } 
    } 
} 
else if(wind_code == 0xF) 
{ 
    // code for handling the WM_PAINT message 
} 
else if(wind_code == 0x1) 
{ 
    SetTimer(hWnd, 1, 0x3e8, 0) 
} 
 
As can be seen, this method can be used to introduce any amount of delay in execution. Since, most 
automated sandboxes detect the delays in Execution by checking for 
Sleep()/SleepEx()/NtDelayExecution() API calls, this method would bypass such detections. 
 
DialogBoxParamA(): 
 
This is another API, which takes the address of the Window Procedure as one of the input parameters. 
Below is an example of a virus that executes the main code section only when it receives the 
WM_COMMAND window message. 
 

 
 

https://gist.github.com/c0d3inj3cT/7611371#file-wmtimer-asm


 
 

 
 
EnumSystemLocalesA(): 
 
Here is another example of a Windows API, which takes an application defined callback function as one 
of the input parameters. 
 
By passing the pointer to malicious subroutine as the callback function, we can invoke it indirectly 
through EnumSystemLocalesA() as shown below: 
 

 
 
Also, it can be seen that there is a control flow obfuscation which finally redirects the execution to the 
address 0x4013A7 which is in between two assembled instructions. This would result in updating the 
view of Debugger since the disassembly changes. 
 
The main impact of using this technique is that the code will be executed if we step over the call to these 
APIs. As a result of this, we need to set a breakpoint at the callback function just before the API is 
invoked. We will break at the callback function in the debugger as soon as the API is executed, this way 
we can continue stepping through the code. 
 
While this technique may appear to be easy for a seasoned reverse engineer, its usage is becoming 
increasingly common among malwares these days. 



 
There are several other Window APIs provided which accept an application defined callback function as 
one of the input parameters. 
 

Execution through Exception Handlers 
 
Malwares could also redirect the execution to the malicious subroutine by triggering an exception. In 
order to do this, they first register an exception handler using either 
RtlAddVectoredExceptionHandler() or by registering a new Structured Exception Handler. 
 
The exception can be invoked using either of the following: 
 

1. Triggering a memory access violation (0xc0000005) by attempting to write to a memory 
address to which there is no write access or by attempting to call an invalid memory address. 

 
2. Executing a privileged instruction like STI or CLI, which would result in a Privileged Exception in 

protected mode (0xc0000096). 
 

3. Performing a division by zero to trigger the exception (0xC0000094). 
 
 
Execution through Exception Handler for 0xc0000096: 
 
Below is an example of a malware, which calls the malicious code by triggering a Privileged Instruction 
exception. 
 
It first registers an exception handler. Then it decrypts the code of that exception handler.  
 

 
 

 
 
Once this is done, it triggers an exception by executing a privileged instruction like CLI or STI 
(both these instructions are privileged in the protected mode). 
 
Since an exception is triggered, the corresponding exception handler from the SEH chain will be 
invoked. This is a control flow obfuscation trick. Below screenshots show an exception triggered after 
executing the CLI instruction. On the stack we can see the exception handler address as: 0x00401610.  
 

 
 



To continue the analysis in Olly Debugger, we can press, Shift + F9 and pass the exception to the 
exception handler or we can just set the EIP to 0x00401610. 
 

 
 
Execution through Vectored Exception Handler: 
 
Below is an example of a malware, which calls the malicious subroutine through a Vectored Exception 
Handler. 
 

 
 
The handler checks only for memory access violation (0xc0000005) exception. It retrieves the address 
of the faulting instruction from EXCEPTION_RECORD structure and compares it with the address it 
expects.  If they are equal it will set the value of EIP in the CONTEXT structure to malicious subroutine 
address (0x00401f03 in this case) so that execution resumes there after exception handling completes. 
 
Execution through RaiseException: 
 
There are also some cases where debuggers like Olly Debugger do not pause at the exception Handler 
when an exception is triggered and instead run the code. 
 
One such case is when we trigger an exception by calling RaiseException() with the exception code, 
0x80000003. 
 
It first registers an exception handler, which has the malicious subroutine code and then triggers the 
exception by calling RaiseException. 
 

 
 
In this case, we can manually set the EIP to 0x0040126D (Structured Exception Handler) and continue 
debugging from there. 
 
 



Execution through Exception Handler for 0xC0000094: 
 
In the case below, the virus redirects execution to exception handler by triggering the exception, 
division by zero. 
 

 
 
Inside the Exception Handler, it sets the address to resume execution from in the CONTEXT Record as 
the address right after execution point of exception (in our case, 0x40B665) 
 

 
 

Execution Slide 
 
There are certain special instructions or sequence of instructions which when executed in the debugger 
change the default behavior of the debugger (to trap at every instruction). 
 
Below are a few examples: 
 
INT 2D Instruction: INT 2D has a special behavior in Olly Debugger. Olly will skip the next byte in 
execution as a result of which the control flow is obfuscated. This technique is often referred to as byte 
scission. 
 
It also has a dynamic behavior under different environments (different combinations of user 
mode/kernel mode debuggers and in case of no debuggers). 
 
Overwrite RETN: This is a special behavior observed in Olly Debugger. If we overwrite the RETN 
instruction with the opcode, 0xC3 (which is the opcode of RETN) just before executing RETN, the 
debugger does not pause at the RETN address but instead runs the code inside debugger. 
 
Below is a proof of concept I have written for this: 



 
; Overwrite RETN opcode 

; Control Flow Obfuscation 

; Sudeep Singh 

  

include \masm32\include\masm32rt.inc 

  

.data 

hMod dd 0 

  

.code 

start: 

push cfm$("RETN -- 0xc3 Overwrite\n") 

call crt_printf 

push cfm$("Make the code section writable\n") 

call crt_printf 

call nextaddr 

nextaddr: pop eax 

mov ebx, eax 

push 4 

call crt_malloc 

mov esi, eax 

invoke LoadLibrary, chr$("kernel32.dll") 

mov hMod, eax 

invoke GetProcAddress, hMod, chr$("VirtualProtect") 

mov ecx, eax 

push esi 

push 040h 

push 0100h 

push ebx 

call ecx 

pushad 

push cfm$("Enter the proof of concept routine\n") 

call crt_printf 

call label1 

popad   ; Debugger will not trap here and instead execute the code 

mov eax, 01h 

shl eax, 08h 

push eax 

push cfm$("2 ^ 8 is: %#0x\n") 

call crt_printf 

call ExitProcess 

label1: 

call label2 

label3: retn 

label2: 

pop eax 

sub eax, offset label3 

lea esi, dword ptr [eax+label3] 

lea edi, dword ptr [eax+label4] 

mov ecx, 1 

rep movs byte ptr [edi], byte ptr [esi] 

label4: retn 

  

end start 

 
Trap Flag Check: We can recover the true value of the Trap Flag bit which is used by Debuggers for 
single stepping by making the processor suspend the interrupts for the next instruction to be executed. 
 



This can be done by writing to the Stack Segment register using either of the following pairs of 
instructions: 
 
Push SS 

Pop SS 

PUSHF 

 
Or 
 
Mov ax, ss 

Mov ss, ax 

PUSHF 

 
This will allow us to recover the true value of EFLAGS register and check for the Trap Flag bit in it. This 
method has been known for quite some time however not used so often in malwares. 
 

Junk Instructions 
 
There are several Polymorphic Engines which are used by malware authors to generate modified 
versions of their binary which perform the same activities on the machine however their code is 
modified. 
 
This is often used to bypass static signatures written for malwares by security vendors. 
 
One of the important features of a Polymorphic Engine is the junk instruction generator. Junk 
instructions are sequence of instructions that do not impact the overall logic of the code in anyway but 
are placed to deter reverse engineering. 
 
Between every useful instruction, several junk bytes are placed. 
 
The main reasons for injecting junk bytes into the code section are: 
 

1. These junk bytes could correspond to complete instructions which do not alter the overall logic 
of the code. They increase the size of code section and deter reverse engineering since even 
though these instructions appear to be legitimate, they have no impact on the main behavior of 
virus. 

2. The junk bytes injected into the code section correspond to partial instructions. This is done to 
confuse the disassemblers which rely on algorithms like Linear Sweep and Recursive 
Traversals. 

3. The code can be obfuscated even further by using opaque predicates which can be combined 
with Windows APIs that will always return a fixed value. 

 
Let us now look at each of the above methods by taking real world virus examples: 
 
At first, let us look at a simple example which places a lot of junk bytes at the Entry Point of the Program 
which correspond to NOPs: 
 



 
 
In this case, by combining an easy sequence of instructions like PUSH/POP, a long chain of NOPs is 
generated. However, once such a pattern is identified, it becomes easy for the reverse engineer to skip 
such sections of code. 
 
Now, let us look at an example where Window APIs are used in such a way that their return value is 
constant. By combining multiple calls to Window APIs in this way, a sequence of junk instructions can 
be generated: 
 

 
 

1. LoadIconA() is called with an invalid Resource Name so that its return value is always 0x0. As a 
result of this, the conditional test that follows it becomes an opaque predicate. 



2. GetCurrentThread() will always return the value 0xfffffffe as a result of which Z flag will be set 
by the conditional test. 

3. GetStockObject() is called in such a way that return value is always 0x0 so that it falls through 
the next conditional test. 
 

Here is another example of using Windows APIs along with some junk instruction sequences: 
 

 
 
1. In this case we can see that a bit of variation is added by calling GetStockObject() twice, once such 

that it always returns 0x0 and the second time it is called with a valid parameter (WHITE_BRUSH), 
so that it returns a non-zero value. 

2. A PUSH/RET sequence is used to jump to the next address. 
 
Even though this sequence of instructions might appear to be easy to analyze, when a lot of such 
sequences are combined together, it can help deter analysis to an extent. 
 
Now, we will look at a sequence of instructions where opaque predicates are created without using 
Window APIs: 
 

 
 
Let us now look at examples where control flow is obfuscated by injecting junk bytes in such a way that 
they form partial instructions and are never executed. 



Below example shows the disassembly produced by Olly Debugger when the EIP is at the 
address 00401610. It is important to note that Linear Sweep algorithm is used in this case to 
generate the disassembly (without the “Analyze Code” option). So, it keeps disassembling the 
bytes to x86 instructions in sequence as and when it is able form a valid instruction. 
 

00401610   E8 04000000      CALL 00401619 

00401615   BA DCFE0068      MOV EDX,6800FEDC 

0040161A   2016             AND BYTE PTR DS:[ESI],DL 

0040161C   40               INC EAX 

0040161D   00EB             ADD BL,CH 

0040161F   04 BA            ADD AL,0BA 

00401621   DCEE             FSUB ST(6),ST 

00401623   0059 EB          ADD BYTE PTR DS:[ECX-15],BL 

 
The actual control flow for above code when executed is: 
 
00401610   E8 04000000      CALL 00401619 

00401619   68 20164000      PUSH 00401620 

0040161E   EB 04            JMP SHORT 00401624 

00401624   59               POP ECX 

 
Let us now understand how the junk bytes were injected and how they confused the disassembler. 
 
There were 4 bytes injected in between the valid instructions at addresses, 00401610 and 00401619. 
 
4 junk bytes injected = BA DC FE 00 
 
BA = opcode of instruction, mov edx, <DWORD> 
 
This is a 5 byte instruction. However, we can see that only 4 bytes are injected which makes the 
instruction incomplete. 
 
The last byte required to complete the instruction is used from the valid instruction at address, 
00401619. The byte in this case corresponds to the PUSH instruction at 00401619. 
 
Since the disassembler is making use of Linear Sweep algorithm, it disassembles the 5 bytes to: 
 
MOV EDX,6800FEDC 

 

As a result of this, the remaining bytes are disassembled incorrectly as well. 
 
Now, let us look at this code in Olly debugger. When we step through the instructions, debugger will 
follow the proper control flow. However, since the initial disassembly displayed was not as per the 
control flow of the code, it will be updated each time we step through it as shown below: 
 

 
 



 
 

 
 

 
 
Observe how the disassembly changes each time we step through the code and every time the 
disassembly changes, the view is updated and instruction at EIP will be at the top of the view. 
 
Olly Debugger is capable of using a Recursive Traversal algorithm for disassembling the code as well. 
It provides us an option to use the “Analyze Code” feature which will disassemble the code based on the 
control flow. Let us use this feature and apply it to the above code. 
 

 
 
 
We can see that though recursive traversal algorithm is better than linear sweep algorithm at 
identifying the junk bytes, it is still susceptible to disassembly errors. 



The “?” symbol next to the opcodes seen above in Olly Debugger indicates that these instructions were 
not disassembled properly. 
 
Also, when injecting junk bytes in the code section, we have to make sure that these junk bytes are not 
executed. In order to do this, unconditional jump instructions are placed before the junk bytes. 
 
Below is an example which shows the initial disassembly and the actual control flow: 
 
00401610   E8 04000000      CALL 00401619 

00401615   BA DCFE0068      MOV EDX,6800FEDC 

0040161A   2016             AND BYTE PTR DS:[ESI],DL 

0040161C   40               INC EAX 

0040161D   00EB             ADD BL,CH 

0040161F   04 BA            ADD AL,0BA 

00401621   DCEE             FSUB ST(6),ST 

00401623   0059 EB          ADD BYTE PTR DS:[ECX-15],BL 

00401626   05 EB8B09EB      ADD EAX,EB098BEB 

0040162B   03EB             ADD EBP,EBX 

0040162D   FA               CLI 

0040162E   74 58            JE SHORT 00401688 

00401630   EB 05            JMP SHORT 00401637 

00401632  ^EB 8B            JMP SHORT 004015BF 

00401634   00EB             ADD BL,CH 

00401636   03EB             ADD EBP,EBX 

00401638   FA               CLI 

00401639  ^74 EB            JE SHORT 00401626 

0040163B   05 7529C8EB      ADD EAX,EBC82975 

00401640   04 EB            ADD AL,0EB 

00401642   FA               CLI 

00401643  -0F85 C1E008EB    JNZ EB48F70A 

00401649   07               POP ES 

0040164A   3B05 4A164000    CMP EAX,DWORD PTR DS:[40164A] 

00401650   7D 6A            JGE SHORT 004016BC 

00401652   030F             ADD ECX,DWORD PTR DS:[EDI] 

00401654   C8 EB05EB        ENTER 5EB,0EB 

 
The actual control flow: 
 
00401610   E8 04000000      CALL 00401619 

00401619   68 20164000      PUSH 00401620 

0040161E   EB 04            JMP SHORT 00401624 

00401624   59               POP ECX 

00401625   EB 05            JMP SHORT 0040162C 

0040162C  ^EB FA            JMP SHORT 00401628 

00401628   8B09             MOV ECX,DWORD PTR DS:[ECX] 

0040162A   EB 03            JMP SHORT 0040162F 

0040162F   58               POP EAX 

00401630   EB 05            JMP SHORT 00401637 

00401637  ^EB FA            JMP SHORT 00401633 

00401633   8B00              MOV EAX,DWORD PTR DS:[EAX] 

00401635   EB 03             JMP SHORT 0040163A 

0040163A   EB 05             JMP SHORT 00401641 

00401641  ^EB FA             JMP SHORT 0040163D 

0040163D   29C8              SUB EAX,ECX 

0040163F   EB 04             JMP SHORT 00401645 

00401645   C1E0 08           SHL EAX,8 

00401648   EB 07             JMP SHORT 00401651 

00401651   6A 03             PUSH 3 



00401653   0FC8              BSWAP EAX 

00401655   EB 05             JMP SHORT 0040165C 

 
You can observe the excessive use of unconditional jumps to prevent the junk bytes from executing. 
 

Detection of Interesting Instructions using Pintool 
 
Now, let us look at the pintool, which I have written to detect interesting sequence of instructions in 
malwares. 
 
The reason I wrote a Pintool to do this is because if we rely on Static Byte Signatures, then we are 
limited to static analysis of the binary (on disk). If the binary is packed then we might not be able to 
detect the interesting instructions, which would be executed after the binary is unpacked in memory. 
 
Since pintool allows us to perform Dynamic Binary Instrumentation, it would be good to make use of it 
for this purpose. 
 
Please note that this pintool is not specifically related to control flow obfuscations. 
 
It can be used to detect the following: 
 

1. Obfuscated code sections of the malware. 
2. Encryption/Decryption Routines. 
3. Function Name Hash generation routines. 
4. Junk Instructions inserted by Polymorphic Engines. 
5. Privileged Instructions 
6. Some methods like GetPC, which are often used by shellcode to be position independent. 
7. Execution of special instructions like SIDT, SLDT, SGDT, which indicate the usage of Anti VM, 

tricks. 
8. Execution of RDTSC, which may indicate the usage of Anti Debugging Tricks. 
9. And some more interesting instructions can be discovered. 

 
I wrote this tool to help me while analyzing malwares and also to discover interesting viruses in the 
wild. This is more of a concept at present and it can be extended to discover more malware attributes at 
an instruction level. 
 
Please note that some of the characteristics mentioned above will also be observed in known packers 
like UPX, ASPack and so on. You can quickly identify the known packers with PEiD and a good database 
of known packers byte signatures. 
 
Interestingly, if you run this pintool against a benign binary, you will observe very little to almost no 
output. As a result of this, it can also be used to detect malicious binaries based on the type of 
instructions executed. 
 
 
 
 
 
 
 



Below is the code written: 
 
/* 

Instruction Tracer to identify 

interesting sequence of instructions 

in malwares. 

  

Sudeep Singh 

*/ 

 

#include <stdio.h> 

#include <iostream> 

#include "pin.H" 

 

VOID Instruction(INS ins, VOID *v) 

{ 

    if(INS_Opcode(ins) == XED_ICLASS_XOR && INS_Address(ins) < 0x3d930000) 

    { 

        if(INS_MaxNumRRegs(ins) == 1) 

        { 

            cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << 

endl; 

        } 

        else 

        { 

            string regRead; 

            string regWrite; 

            regWrite = REG_StringShort(INS_RegW(ins, 0)); 

            regRead = REG_StringShort(INS_RegR(ins, 0)); 

            if(regRead.compare(regWrite) != 0 && regRead.compare("ebp") != 0 && 

regWrite.compare("ebp") != 0) 

            { 

                cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) 

<< endl; 

            } 

        } 

    } 

    else if(INS_Opcode(ins) == XED_ICLASS_ADD && INS_Address(ins) < 0x3d930000) 

    { 

        if(INS_MaxNumRRegs(ins) == 1 && INS_RegWContain(ins, REG_ESP) == 0 && 

(INS_OperandImmediate(ins, 1) & 0x00ff0000) != 0 && ((INS_OperandImmediate(ins, 

1) & 0x00ffff00) ^ 0x00ffff00) != 0) 

        { 

            cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << 

endl; 

        } 

        else 

        { 

            string regRead; 

            string regWrite; 

            regWrite = REG_StringShort(INS_RegW(ins, 0)); 

            regRead = REG_StringShort(INS_RegR(ins, 0)); 

            if(regRead.compare(regWrite) != 0 && regRead.compare("ebp") != 0 && 

regWrite.compare("ebp") != 0 && regRead.compare("esp") != 0 && 

regWrite.compare("esp") != 0) 

            { 

                cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) 

<< endl; 

            } 

        } 

    } 



    else if(INS_Opcode(ins) == XED_ICLASS_SIDT || INS_Opcode(ins) == 

XED_ICLASS_SGDT || INS_Opcode(ins) == XED_ICLASS_SLDT) 

    { 

        cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl; 

    } 

    else if(INS_Opcode(ins) == XED_ICLASS_STI || INS_Opcode(ins) == 

XED_ICLASS_CLI) 

    { 

        cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl; 

    } 

    else if(INS_Opcode(ins) == XED_ICLASS_SUB && INS_MaxNumRRegs(ins) == 1 && 

INS_RegWContain(ins, REG_ESP) == 0 && (INS_OperandImmediate(ins, 1) & 0x0000ff00) 

!= 0 && INS_Address(ins) < 0x3d930000) 

    { 

        cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl; 

    } 

    else if(INS_Opcode(ins) == XED_ICLASS_CMP && INS_MaxNumRRegs(ins) == 1 && 

INS_Size(ins) > 0x3 && INS_IsMemoryRead(ins) == 0 && (INS_OperandImmediate(ins, 

1) & 0xff000000) != 0 && ((INS_OperandImmediate(ins, 1) & 0x00ffff00) ^ 

0x00ffff00) != 0 && INS_Address(ins) < 0x3d930000) 

    { 

        cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl; 

    } 

    else if(INS_Opcode(ins) == XED_ICLASS_LOOP && INS_Address(ins) < 0x3d930000) 

    { 

        cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl; 

    } 

    else if(INS_Opcode(ins) == XED_ICLASS_ROR && INS_MaxNumRRegs(ins) == 1 && 

INS_Address(ins) < 0x3d930000) 

    { 

        cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl; 

    } 

    else if(INS_IsCall(ins) && INS_IsIndirectBranchOrCall(ins) == 0) 

    { 

        if(INS_DirectBranchOrCallTargetAddress(ins) == INS_Address(ins) + 0x5) 

        { 

        cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << " --> 

GetPC " << endl;   

        } 

    } 

    else if(INS_Opcode(ins) == XED_ICLASS_RDTSC) 

    { 

        cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << endl; 

    } 

    else if(INS_Opcode(ins) == XED_ICLASS_INT || INS_Opcode(ins) == 

XED_ICLASS_INT1 || INS_Opcode(ins) == XED_ICLASS_INT3) 

    { 

        cout << hex << INS_Address(ins) << " : " << INS_Disassemble(ins) << "<-- 

INT instruction" << endl; 

    } 

} 

 

VOID Fini(INT32 code, VOID *v) 

{ 

    printf("Instrumentation has completed!\n"); 

} 

 

INT32 Usage() 

{ 

    return -1; 

} 



 

int main(int argc, char * argv[]) 

{ 

    if (PIN_Init(argc, argv))  

    return Usage(); 

     

    INS_AddInstrumentFunction(Instruction, 0); 

     

    PIN_AddFiniFunction(Fini, 0); 

     

    PIN_StartProgram(); 

     

    return 0; 

} 

 
Now, let us run it against some of the viruses discussed previously and understand the output 
generated. 
 
Below is the output from the pintool for one of the viruses: 
 

 
 
We have the addresses corresponding to the instructions of interest. Let us now look at the code 
sections which have these instructions in the debugger. 
 



 
 
The instructions in the pintools output can be used to identify the Function Name hash generation 
routine as shown below: 
 

 
 
Let us label the subroutine at 00401110 as “GetFunctionNameHash()” 
If we look up the instruction at address, 004010d4, it brings us to the subroutine used to calculate the 
Function Pointer. 
 

 
 



Let us label the subroutine at address, 004010A5 as GetFunctionPointer() 
 
We will look up the instruction at address, 00401176 in debugger: 
 

 
 
If we trace the code to the shellcode at address, 0040b008 we can see that the pintool identified the 
decryption routine correctly. 
 

 
 
By putting all this together we have the flow as: 
 

1. The code manually crafts a 0x40 bytes shellcode at address 0x0040b00e using a sequence of Sub 
instructions. 

2. It calculates the function pointer of VirtualProtect() using a precalculated function name hash 
and by parsing the export directory of kernel32.dll 

3. It calls VirtualProtect() to mark 0x1000 bytes at address, 0x0040b00e as 
PAGE_EXECUTE_READWRITE since this region of code will be self modified and then executed. 

4. Transfers the control flow to 0x0040b00e. 
5. Uses GetPC to identify the address of code to be decrypted. 
6. Uses a one byte ADD key, 0xDB to decrypt 0xA55 bytes of code and then continues executing the 

decrypted code. 
 
This way, we can see how the pintool helped us quickly identify the useful sections of code. This will 
help us in performing an indepth analysis of the control flow of the code, to understand the packer used 
and the decryption routines used as well. 
 

Conclusion 
 

After reading this paper you will have an understanding of the various techniques used by viruses in the 
real world to obfuscate the code to deter reverse engineering. 
 



This should help in analyzing viruses which use similar techniques as it is becomingly increasingly 
common for viruses to prevent the analysis of their code. 
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