

Writing an Quick Packet Sniffer with Python & Scapy

Author: Roshan Poudel

Note: The codes are available at github repo here.

https://www.researchgate.net/profile/Roshan_Poudel2
https://github.com/Papu11/Python-Scapy-Packet-Sniffer

 Abstract

Everyday Information Security Professionals and Network Engineers come across
several problems where available tools became quite ineffective to resolve the
problem. Available tools can also provide desired results but sometimes they provide
huge chunks, deluge of data which itself consumes time and effort to filter out.
Hence, Having a knowledge of some scripting always helps in problem solving,
research and automation which end up saving time, cost and effort. This paper
elaborates the development of a quick packet sniffer using Python Programming
language and Scapy Framework. Packet sniffer is a software tool to intercept, log,
and analyze network traffic and data. Writing a packet sniffer clarifies us with
understanding packet layers, components of network packets, crafting, sniffing,
dissection and also assists getting the hands dirty for further exploration.

1.0 Introduction
The internet Penetration rate of the world is accelerating at a significant rate (internet
world stat , 2020) . At such a pace, analyzing and evaluating the network traffic is
extremely challenging as well as important. Parallel with the growth of internet
penetration rate; cyber incidents are increasing and emerged as a big challenge for
organization of diverse backgrounds. Hence, information security engineers and
professionals have a sensitive responsibility to prevent these incidents.

Scripting is the highest sought skill in the professionals of information
security or even for the network side. Scripting knowledge of some programming
languages helps to automate security tasks, develop tools and possibility goes on.
Packet Sniffers are a nifty and extremely handy tool for network and security
professionals. Sniffers allow security professionals to analyze, filter and monitor
network packets. As the topic of this paper, we are going straight forward to develop
a packet sniffer to sniff network packets and classify packets based on protocols
TCP, UDP,ICMP. If we refer ourselves to the internet statistics of the internet world
stat we can analyze that the growth rate of internet penetration rate is at a dizzying
pace. Below is a picture of the internet penetration rate of the world on first quarter of
2020.

Fig: Growth of Internet Penetration rate (src:Internet world stat, 2020)

1.2 Aims and Objectives of Paper
The main aim of this paper is to develop a packet sniffer that can help some infosec
professionals. Actually, I learned scapy on my college days and wrote several useful
tools using python and scapy. These tools are extremely useful for me today as a
security professional. Hence, today I want to share some of the tools I developed.
Some of the key subjects that will be addressed in this paper are:

● Brief Explanation of Packet Sniffers and Use Cases of them
● Development of packet Sniffer with sequential steps on a layman term
● Availability of all codes on the github repository

1.3 Expected Knowledge on Readers

I am not going deep into describing all the protocols and detailed elaboration of
packet sniffer. I have elaborated all the details of network protocols and packet
sniffer on my previous paper which is available here. Hence, some sort of scripting
python and network knowledge is expected on the readers of this paper. Also, scapy
readers are expected to have basic knowledge of scapy framework. The detailed
documentation of scapy is available here. Having knowledge of scapy always
assists to develop security tools in python.

1.4 Scope of the Paper
This paper is written to address the development of a quick packet sniffer using
python and scapy. In this paper we are going to classify all packets using layer
composition. The packet sniffer will sniff all the incoming packets and outgoing
packets from the host machine from all interfaces. Packets will be classified based
on TCP, UDP and ICMP protocols. On each protocol classification they are divided
into incoming packets and outgoing packets. Some of the information eject on the
console are source ip, destination ip, source port, destination port, geo location etc.
The packet sniffer does not have GUI interface and is executed from command
console.

https://www.researchgate.net/publication/337304617_Network_Traffic_Visualization_with_Scapy_and_ELK_Stack
https://scapy.readthedocs.io/en/latest/

2.0 Packet Sniffer and its Development
Packet sniffing is used within a network to capture and register data flows. The
process allows you to discern each individual packet and analyze its content based
on predefined parameters. Packet Sniffing allows for very detailed network
monitoring and bandwidth usage analysis. It, however, requires a broader knowledge
of networks and their inner functions, to be able to recognize the relevance of the
data being monitored(source: Paessler AG, 2013).

A packet sniffer can be usually be setup in two very different paradigms:

✓ Unfiltered Packets Paradigm – This setup captures all the packets
generated in the network

✓ Filtered Packets Paradigm – This setup captures only those packets
that seem to contain specific versions of data elements. (source:
HowStuffWorks, Inc, 2013).

2.1 Scripting Packet Sniffer with Python and Scapy
Pre-requisites: LInux Operating System (I am writing this on debian)

Installing Scapy: Installing scapy in your operating system. For more information
refer to official documentation here. For debian it can be installed as
sudo apt install scapy

Step 1: Once the scapy is installed it can be confirmed using sudo scapy. A
successful installation will provide the following output.

Fig: Successful installation of scapy

https://scapy.readthedocs.io/en/latest/installation.html

Step 2: Create a python file and import all the required modules.
i.e os, socket, scapy, datetime.
Note: Geoip is not pre-installed in python so it can be installed using pip install
python-geoip and official documentation here

Fig: importing all required modules

Step 3: After importing all the required modules creating a function and using python
builtin main function. Also, using the prn parameter helps to sniff packets
continuously. In place of prn if we use count=1 then only one packet will be sniffed,

Fig: Creating function and start sniffing

https://pypi.org/project/python-geoip/

Step 4: Classifying packets into TCP, UDP and ICMP. Scapy has a builtin function
to check if a packet has layers of protocols. i.e packet.haslayer(TCP), or
packet.haslayer(UDP) or any protocols supported by scapy.

Fig 4: Classifying packets into TCP, UDP and ICMP

Step 5: Classifying packets into incoming and outgoing packets. At the time i am
writing this paper there are ipv4 network addresses used in my ISP. Now, we can
classify the packets into incoming and outgoing packets based on the location.
 Classification Criteria:
 If source address in packet is IP address of my machine=outgoing packet
 If destination address in packet is IP address of my machine=incoming packet

Fig 5: Classifying packets into incoming and outgoing packets

Step 6: We are at the end of packet sniffer development. Now the final step is to print
all required information in the console. Information printed in the console are:
Time stamp, Source Port, Destination Port, Source Ip Address, Destination IP
Address, Geo location

Sample of printed data from TCP-Incoming packet:
 print(str("[")+str(time)+str("]")+" "+"TCP-IN:{}".format(len(pkt[TCP]))+" Bytes"+"
"+"SRC-MAC:" +str(pkt.src)+" "+ "DST-MAC:"+str(pkt.dst)+" "+
"SRC-PORT:"+str(pkt.sport)+" "+"DST-PORT:"+str(pkt.dport)+"
"+"SRC-IP:"+str(pkt[IP].src)+" "+"DST-IP:"+str(pkt[IP].dst)+" " +"Location:"
+geolite2.lookup(pkt[IP].src).timezone)

Fig 6: printing all required values from packet.

Step 7: Sniffing Packets. The program is now completed and now we can sniff
packets using the script. To sniff packets just run sudo python <script name.py>. The
code is also available in github here.

Output: The console output of the code is:-

Fig 7: TCP-UDP incoming and outgoing packets are captured by script

Step 8: Capturing ICMP Packets by pinging a machine.

Fig: Captured ICMP packets while i ping an ip address

3.0 Conclusion and Codes
Packet Sniffer developed was able to capture packets like TCP, UDP, ICMP. For
each component the information like source ip, destination ip, source port,
destination port, geo location , timestamp is printed out. This script is handy to
capture packets from the terminal. This tool is extremely handy for infosec and
network professionals to capture packets by running a script with small size. The
code are available at github here.

4.0 References:
1. Internet Users Distribution in the world
Available on https://www.internetworldstats.com/stats.htm
[Accessed on 2020/05/28]
2. Miller, R. (2019). The OSI Model: An Overview. SANS Institute., Page(s):5-12
3 Nimisha P, R. G. (2014). Packet Sniffing: Network Wiretapping. IEEE International
Advance Computing Conference.

https://github.com/Papu11/Python-Scapy-Packet-Sniffer
https://www.internetworldstats.com/stats.htm

4 Pallavi Asrodia, H. (2012). Network Traffic Analysis Using Packet Sniffer .
International
Journal of Engineering Research and Applications .
5. Magers Daniel.(2002). Packet Sniffing: An Integral Part of Network Defense
,SANS Institute
6. Scapy official documentation
Available on https://scapy.readthedocs.io/en/latest/
[Accessed on 2020/01/20]

https://scapy.readthedocs.io/en/latest/

