
SMART CONTRACT AUTOMATED TESTING GUIDELINESSMART CONTRACT AUTOMATED TESTING GUIDELINES
Author: enderlocphan@gmail.com

Git Repo: https://github.com/enderphan94/solidity-pentest/

ForewordForeword

The documents aim to recap my experience in smart contract automated testing besides the manual testing. I also put the issues that I faced during the execution,
indeed, solutions are given.

Connecting with Remix from localhostConnecting with Remix from localhost

For a complex project, you can't just copy paste the single sol file and let it run. To make our life easier, Remix has localhost connection which allows you to interact
with your project in your local machine remotely.

This is something I'm used to doing when the project has a large number of inheritant contracts. Obviously, this make our life easier than ever by just downloading the
git project and do some commands.

Steps:Steps:

1. Compile your truffle contract if needed with npm install (!remember remvove the package-lock.json, if it does have it). Otherwise, the remix wouldn't be
able to load all libraries for the contracts that are being called.

2. Go to WorkSpaces on the left panel and choose "Connect to Localhost"

3. The message box pops up and you just need to read carefully and copy the command shown in the box to connect your localhost

remixd -s path-to-the-shared-folder --remix-ide remix-ide-instance-URL

Important:

path-to-the-shared-folder: needs to be an absolute path

remix-ide-instance-URL: needs to plain with http or https

eg:

remixd -s /home/enderphan/LOLToken/ --remix-ide http(s)://your-remix-address.com/

IssuesIssues

Issue 1Issue 1

Somtimes I still got this error from Remix

Cannot connect to the remixd daemon. Please make sure you have the remixd running in the background.

What I usually do is just switch to a new terminal tab and re-type the remixd command. If needed, you can just uinstall and reinstall the remixd (Close VS-Code to do
this, if you have it opened)

https://remix-ide.readthedocs.io/en/latest/remixd.html

Issue 2Issue 2

The same error but another issue.

https://ethereum.stackexchange.com/questions/78637/cant-connect-remix-ide-using-remixd

Solc version problemsSolc version problems

Source: https://github.com/crytic/solc-select

IssuesIssues

You need to just switch the version of solc quickly by a command. The version of solc is kindda painful, depending on the tools and project, you need to use a specific
and exact version to compile.. otherwise broke.

During my audit, I've suffered with solc-select installations. I used to install via the shell command, but now they've upraded to pip3. The thing is that some docker
containers do not support pip3, so you would need to install solc-selct into that docker but pip3. Therefore, I'v a copied version of the solc-select installed via shell.

InstallationInstallation

Via shell: https://github.com/enderphan94/solc-select-sh-version

Via pip3: https://github.com/crytic/solc-select

Usage:Usage:

Install the version you want

solc-select install 0.8.0

And use it

solc-select use 0.8.0

Check your solc version again

solc --version

ToolsTools

1. Slither1. Slither

Source: https://github.com/crytic/slither

FeaturesFeatures

Detects vulnerable Solidity code with low false positives (see the list of trophies)
Identifies where the error condition occurs in the source code
Easily integrates into continuous integration and Truffle builds
Built-in 'printers' quickly report crucial contract information
Detector API to write custom analyses in Python
Ability to analyze contracts written with Solidity >= 0.4
Intermediate representation (SlithIR) enables simple, high-precision analyses
Correctly parses 99.9% of all public Solidity code
Average execution time of less than 1 second per contract

How to installHow to install

Slither requires Python 3.6+ and solc, the Solidity compiler.

Using PipUsing Pip

pip3 install slither-analyzer

Using GitUsing Git

git clone https://github.com/crytic/slither.git && cd slither

python3 setup.py install

We recommend using an Python virtual environment, as detailed in the Developer Installation Instructions, if you prefer to install Slither via git.

Using DockerUsing Docker

file:///tmp/trophies.md
https://github.com/trailofbits/slither/wiki/SlithIR
https://github.com/ethereum/solidity/
https://github.com/trailofbits/slither/wiki/Developer-installation

Use the eth-security-toolbox docker image. It includes all of our security tools and every major version of Solidity in a single image. /home/share will be
mounted to /share in the container.

docker pull trailofbits/eth-security-toolbox

To share a directory in the container:

docker run -it -v /home/share:/share trailofbits/eth-security-toolbox

UsageUsage

slither <file-name>.sol

IsssueIsssue

Error: Source "@openzeppelin/contracts/utils/Context.sol" not found: File outside of allowed directories.

Fixed: the --allow-path does not work, just download the library and copy them into the dir.. casual way :/

2. Mythril2. Mythril

Mythril detects a range of security issues, including integer underflows, owner-overwrite-to-Ether-withdrawal, and others. Note that Mythril is targeted at finding
common vulnerabilities, and is not able to discover issues in the business logic of an application. Furthermore, Mythril and symbolic executors are generally unsound,
as they are often unable to explore all possible states of a program.

Source: https://github.com/ConsenSys/mythril

How to installHow to install

$ docker pull mythril/myth

Install from Pypi:

$ pip3 install mythril

Note: In my exprience, I prefer using mythril version installed via pip3 rather than Docker. I've faced so many issues with the docker version, and I decided to switch to
pip3 one.

UsageUsage

Via pip3: https://github.com/ConsenSys/mythril/blob/develop/README.md#usage

Via Docker: docker run -v $(pwd):/tmp mythril/myth a /tmp/<file-name>.sol --solv 0.5.0

IssuesIssues

Issue 1Issue 1

In case the tool gives you this error:

mythril.mythril.mythril_disassembler [ERROR]: The file Token.sol does not contain a compilable contract. mythril.interfaces.cli [ERROR]: input files do not contain
any valid contracts

We can use contract address in testnet or ganache https://mythril-classic.readthedocs.io/en/master/security-analysis.html

Ganache: myth a --rpc ganache -a <address>

Issue 2Issue 2

Evn: MacOS

Just in case the command Pip3 install mythril does not work. I don't remember what happened exactly but something does not work with pip3 in MacOS :)

Use the following command

sudo xcode-select --switch /Library/Developer/CommandLineTools

Issue 3Issue 3

Error

in self.solidity_files[file_index].full_contract_src_maps IndexError: list index out of range

https://github.com/trailofbits/eth-security-toolbox/

Just uninstall mythril and reinstall it

pip3 uninstall mythril

pip3 install mythril

````

### 3. Manticore

This tool takes quite a long time to complete.

#### Features

Program Exploration: Manticore can execute a program with symbolic inputs and explore all the possible states it can reach

Input Generation: Manticore can automatically produce concrete inputs that result in a given program state

Error Discovery: Manticore can detect crashes and other failure cases in binaries and smart contracts

Instrumentation: Manticore provides fine-grained control of state exploration via event callbacks and instruction hooks

Programmatic Interface: Manticore exposes programmatic access to its analysis engine via a Python API

#### Installation

> Note: We recommend installing Manticore in a [virtual environment](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#installing-virtualenv)

 to prevent conflicts with other projects or packages

Option 1: Installing from PyPI:

```bash

pip install manticore

Option 2: Installing from PyPI, with extra dependencies needed to execute native binaries:

pip install "manticore[native]"

Option 3: Installing a nightly development build:

pip install --pre "manticore[native]"

Option 4: Installing from the master branch:

git clone https://github.com/trailofbits/manticore.git

cd manticore

pip install -e ".[native]"

Option 5: Install via Docker:

docker pull trailofbits/manticore

Once installed, the manticore CLI tool and Python API will be available.

For a development installation, see our wiki.

UsageUsage

Sigle contract in a file

manticore <file-name>.sol

Mutiple contracts in a file

https://github.com/trailofbits/manticore/wiki/Hacking-on-Manticore

manticore <file-name>.sol --contract <main-contract-name>

Note:

Manticore takes quite a long time to complete the scan by default, so usually I also use --quick-mode option for quick exploration. Disable gas, generate testcase
only for alive states, do not explore constant functions. Disable all detectors.

manticore <file-name>.sol --contract <main-contract-name> --quick-mode

4. Theo4. Theo

Source: https://github.com/cleanunicorn/theo

FeaturesFeatures

Automatic smart contract scanning which generates a list of possible exploits.
Sending transactions to exploit a smart contract.
Transaction pool monitor.
Web3 console
Frontrunning and backrunning transactions.
Waiting for a list of transactions and sending out others.
Estimating gas for transactions means only successful transactions are sent.
Disabling gas estimation will send transactions with a fixed gas quantity.

InstallationInstallation

pip install theo

UsageUsage

Usually I deploy the smart contract in Ganache local network, from that, I can freely have the private keys of many accounts. If you have metamask installed, you can
deploy in the testnet and get the private key of the accounts.

1. Deploy the contract
2. Run

theo --rpc-http <your-network>

3. Enter the private key of the attack's account
4. Enter the smart contract address

eg:

theo --rpc-http http://127.0.0.1:8545

5. SmartCheck5. SmartCheck

Souce: https://www.npmjs.com/package/@smartdec/smartcheck

SmartCheck is an extensible static analysis tool for discovering vulnerabilities and other code issues in Ethereum smart contracts written in the Solidity programming
language

InstallationInstallation

npm install @smartdec/smartcheck -g

UsageUsage

1. Copy the contract to a folder
2. Run

smartcheck -p <path to directory or file>

6. Securitfy26. Securitfy2

Source: https://github.com/eth-sri/securify2

FurtureFurture

Supports 38 vulnerabilities (see table below)
Implements novel context-sensitive static analysis written in Datalog
Analyzes contracts written in Solidity >= 0.5.8

InstallationInstallation

To build the container:

sudo docker build -t securify .

To run the container:

sudo docker run -it -v <contract-dir-full-path>:/share securify /share/<contract>.sol

contract-dir-full-path: should be the absolute path

eg:

sudo docker run -it -v </Users/foob/contract/>:/share securify /share/test.sol

7. Sohint7. Sohint

Source: https://github.com/duaraghav8/Ethlint

Ethlint (Formerly Solium) analyzes your Solidity code for style & security issues and fixes them.

InstallationInstallation

npm install -g ethlint

UsageUsage

In the root directory of your DApp:

solium --init

This creates .soliumrc.json file, which contains configuration that tells Solium how to lint your project. You should modify this file to configure rules, plugins and
sharable configs.

I just usually use this simple setting.

{

 "extends": "solium:recommended"

}

Then you can run

solium -f foobar.sol

or

solium -d contracts/

8. Spell check8. Spell check

Source: https://github.com/streetsidesoftware/cspell

The cspell mono-repo, a spell checker for code.

InstallationInstallation

npm install -g git+https://github.com/streetsidesoftware/cspell-cli

UsageUsage

cspell-cli <contract-name>.sol

9. Sūrya (flow graph)9. Sūrya (flow graph)

Source: https://github.com/ConsenSys/surya

Surya is an utility tool for smart contract systems. It provides a number of visual outputs and information about the contracts' structure. Also supports querying the
function call graph in multiple ways to aid in the manual inspection of contracts.

InstallationInstallation

Install graphviz

brew install graphviz

Install surya

npm install -g surya

UsageUsage

surya graph <contract>.sol | dot -Tpng > MyContract.png

Note: I recommend using Surya in VS Code

Audit with Visual Studio CodeAudit with Visual Studio Code

Here is my list:

1. Name: vscode-slither

VS Marketplace Link: https://marketplace.visualstudio.com/items?itemName=samparsky.vscode-slither

2. Name: Solidity Visual Developer

VS Marketplace Link: https://marketplace.visualstudio.com/items?itemName=tintinweb.solidity-visual-auditor

3. Name: Slither

VS Marketplace Link: https://marketplace.visualstudio.com/items?itemName=trailofbits.slither-vscode

4. Name: Code Spell Checker

VS Marketplace Link: https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker

5. Name: mythril

VS Marketplace Link: https://marketplace.visualstudio.com/items?itemName=xgwang.mythril

6. Name: solidity

VS Marketplace Link: https://marketplace.visualstudio.com/items?itemName=JuanBlanco.solidity

	SMART CONTRACT AUTOMATED TESTING GUIDELINES
	Foreword
	Connecting with Remix from localhost
	Steps:
	Issues
	Issue 1
	Issue 2

	Solc version problems
	Issues
	Installation
	Usage:

	Tools
	1. Slither
	Features
	How to install
	Usage
	Isssue

	2. Mythril
	How to install
	Usage
	Issues
	Usage

	4. Theo
	Features
	Installation
	Usage

	5. SmartCheck
	Installation
	Usage

	6. Securitfy2
	Furture
	Installation

	7. Sohint
	Installation
	Usage

	8. Spell check
	Installation
	Usage

	9. Sūrya (flow graph)
	Installation
	Usage

	Audit with Visual Studio Code

