
Securing
Authentication and
Authorization

1. Intro
We will be covering these topics in this
presentations

➔ What is Authentication.

➔ Weaknesses

➔ Securing Authentication

➔ What is Authorization

➔ Weaknesses

➔ Securing Authorization

What is Authentication
Authentication is the process of verifying that an
individual, entity or website is whom it claims to
be. In the context of web application it is being
carried out by submitting the username and the
password.

Weaknesses in the
Authentication

Weak and Reused
Passwords

The password which is most used in
the World is 123456. Users were able
to use these type of password because
there were no password policies
implement. Even though many users
reuse their password of different
website, so If one website is breached
their account on other may also be
compromised

Tip
Don’t reuse the
password on different
website and chose a
secure password which
contains alphanumeric
characters with special
one’s

Password Brute Force

If the application is not using the
captcha or any protection against the
brute force then a malicious attacker
can easily crack the password by using

a list of known words.

Tip
Implement a brute force
protection on the
website.

Securing
Authentication

How to Secure Authentication
Authentication can always be secured by using the
layers or authentication which is usually called the
multi factor authentication or MFA.

Most of the Web Applications uses 2FA to
authenticate the users which provides an extra
layer of authentication and secure the users from
weak or password reuse attacks.

What is 2FA
Users can enable this on their requirements. This
uses couple of different methods

1. OTP on email or phone
2. Google Authentication or Authy apps
3. Secret Questions

So after submitting a Valid username and
password user need to use any of the above
method to prove their identity.

Example
Attackers have access to hundreds of millions of
valid username and password combinations for
credential stuffing, default administrative account
lists, automated brute force, and dictionary attack
tools. Session management attacks are well
understood, particularly in relation to unexpired
session tokens.

What is
Authorization ?

What is Authorization
Authorization is the process by which we verify if
an individual entity have access to certain
resources or not.

It is different from authentication as it only
verifies the whether user have permission to
access some of the resources or not.

Weaknesses in
 Authorization

Weakness with Authorization
There are a couple of vulnerabilities that occur
due to the authorization issues.

These are

1. Directory Traversal
2. IDOR
3. Privilege Escalation

Why it occurs
When Users and their Inputs are not properly
validated they lead to the authorization issues .

Due to which issues like accessing the sensitive
files, elevating to the admin privileges may occurs.

A normal user can elevate this privileges to
perform the actions that are only intended to
perform by the admin.

Example
Consider a website “somesite.com”, that has a feature that allows users to check
their account balance only after post-authentication. The details fetched with
account balance also includes the account holder's name, email address, and
account number. To retrieve the personal details website submits a request with an
account number to the endpoint listed below.

https://somesite.com/customer/balance.aspx?acc_number=33761

The account number is explicitly used to perform queries on the database. As there
is no backend authorization check on this endpoint, the attacker can simply modify
the value of account number to another user’s account and can retrieve the details
of other users.

https://somesite.com/customer/balance.aspx?acc_number=33761

 Securing
Authorization

Securing Authorization
1. Never rely on obfuscation alone for access

control.
2. Unless a resource is intended to be publicly

accessible, deny access by default.
3. Wherever possible, use a single

application-wide mechanism for enforcing
access controls.

4. Thoroughly audit and test access controls to
ensure they are working as designed.

End :)

